Properties

Label 10.0.21141825471.1
Degree $10$
Signature $[0, 5]$
Discriminant $-21141825471$
Root discriminant \(10.78\)
Ramified primes $3,13,199$
Class number $1$
Class group trivial
Galois group $F_5 \wr C_2$ (as 10T33)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^10 - 2*x^9 + 6*x^8 - 12*x^7 + 21*x^6 - 29*x^5 + 32*x^4 - 29*x^3 + 22*x^2 - 12*x + 3)
 
gp: K = bnfinit(y^10 - 2*y^9 + 6*y^8 - 12*y^7 + 21*y^6 - 29*y^5 + 32*y^4 - 29*y^3 + 22*y^2 - 12*y + 3, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^10 - 2*x^9 + 6*x^8 - 12*x^7 + 21*x^6 - 29*x^5 + 32*x^4 - 29*x^3 + 22*x^2 - 12*x + 3);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 - 2*x^9 + 6*x^8 - 12*x^7 + 21*x^6 - 29*x^5 + 32*x^4 - 29*x^3 + 22*x^2 - 12*x + 3)
 

\( x^{10} - 2x^{9} + 6x^{8} - 12x^{7} + 21x^{6} - 29x^{5} + 32x^{4} - 29x^{3} + 22x^{2} - 12x + 3 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $10$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 5]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-21141825471\) \(\medspace = -\,3^{5}\cdot 13^{3}\cdot 199^{2}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(10.78\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Ramified primes:   \(3\), \(13\), \(199\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-39}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{13}a^{9}-\frac{3}{13}a^{8}-\frac{4}{13}a^{7}+\frac{5}{13}a^{6}+\frac{3}{13}a^{5}-\frac{6}{13}a^{4}-\frac{1}{13}a^{3}-\frac{2}{13}a^{2}-\frac{2}{13}a+\frac{3}{13}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $4$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{36}{13} a^{9} + \frac{43}{13} a^{8} - \frac{181}{13} a^{7} + \frac{288}{13} a^{6} - \frac{524}{13} a^{5} + \frac{632}{13} a^{4} - \frac{653}{13} a^{3} + \frac{540}{13} a^{2} - \frac{383}{13} a + \frac{152}{13} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{29}{13}a^{9}-\frac{35}{13}a^{8}+\frac{144}{13}a^{7}-\frac{232}{13}a^{6}+\frac{412}{13}a^{5}-\frac{499}{13}a^{4}+\frac{504}{13}a^{3}-\frac{409}{13}a^{2}+\frac{280}{13}a-\frac{95}{13}$, $\frac{5}{13}a^{9}-\frac{2}{13}a^{8}+\frac{19}{13}a^{7}-\frac{27}{13}a^{6}+\frac{41}{13}a^{5}-\frac{56}{13}a^{4}+\frac{47}{13}a^{3}-\frac{62}{13}a^{2}+\frac{42}{13}a-\frac{11}{13}$, $\frac{18}{13}a^{9}-\frac{28}{13}a^{8}+\frac{97}{13}a^{7}-\frac{170}{13}a^{6}+\frac{301}{13}a^{5}-\frac{381}{13}a^{4}+\frac{385}{13}a^{3}-\frac{322}{13}a^{2}+\frac{224}{13}a-\frac{89}{13}$, $\frac{2}{13}a^{9}+\frac{7}{13}a^{8}+\frac{5}{13}a^{7}+\frac{23}{13}a^{6}-\frac{20}{13}a^{5}+\frac{53}{13}a^{4}-\frac{54}{13}a^{3}+\frac{48}{13}a^{2}-\frac{43}{13}a+\frac{19}{13}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 42.3340333761 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 42.3340333761 \cdot 1}{6\cdot\sqrt{21141825471}}\cr\approx \mathstrut & 0.475189130049 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^10 - 2*x^9 + 6*x^8 - 12*x^7 + 21*x^6 - 29*x^5 + 32*x^4 - 29*x^3 + 22*x^2 - 12*x + 3)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^10 - 2*x^9 + 6*x^8 - 12*x^7 + 21*x^6 - 29*x^5 + 32*x^4 - 29*x^3 + 22*x^2 - 12*x + 3, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^10 - 2*x^9 + 6*x^8 - 12*x^7 + 21*x^6 - 29*x^5 + 32*x^4 - 29*x^3 + 22*x^2 - 12*x + 3);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 - 2*x^9 + 6*x^8 - 12*x^7 + 21*x^6 - 29*x^5 + 32*x^4 - 29*x^3 + 22*x^2 - 12*x + 3);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$F_5\wr C_2$ (as 10T33):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 800
The 20 conjugacy class representatives for $F_5 \wr C_2$
Character table for $F_5 \wr C_2$

Intermediate fields

\(\Q(\sqrt{-3}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 20 siblings: data not computed
Degree 25 sibling: data not computed
Degree 40 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.8.0.1}{8} }{,}\,{\href{/padicField/2.2.0.1}{2} }$ R ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ ${\href{/padicField/7.5.0.1}{5} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ R ${\href{/padicField/17.2.0.1}{2} }^{5}$ ${\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }$ ${\href{/padicField/29.10.0.1}{10} }$ ${\href{/padicField/31.5.0.1}{5} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ ${\href{/padicField/43.5.0.1}{5} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ ${\href{/padicField/53.10.0.1}{10} }$ ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(13\) Copy content Toggle raw display $\Q_{13}$$x + 11$$1$$1$$0$Trivial$[\ ]$
$\Q_{13}$$x + 11$$1$$1$$0$Trivial$[\ ]$
13.4.3.4$x^{4} + 91$$4$$1$$3$$C_4$$[\ ]_{4}$
13.4.0.1$x^{4} + 3 x^{2} + 12 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
\(199\) Copy content Toggle raw display $\Q_{199}$$x + 196$$1$$1$$0$Trivial$[\ ]$
$\Q_{199}$$x + 196$$1$$1$$0$Trivial$[\ ]$
199.4.2.2$x^{4} - 38407 x^{2} + 118803$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
199.4.0.1$x^{4} + 7 x^{2} + 162 x + 3$$1$$4$$0$$C_4$$[\ ]^{4}$