Normalized defining polynomial
\( x^{10} - 4 x^{9} + 14 x^{8} - 22 x^{7} + 65 x^{6} + 164 x^{5} + 508 x^{4} + 888 x^{3} + 1671 x^{2} + 1890 x + 900 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-207252522098163=-\,3^{5}\cdot 31^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{60} a^{6} + \frac{7}{60} a^{4} + \frac{1}{60} a^{2} + \frac{1}{10} a$, $\frac{1}{180} a^{7} - \frac{1}{180} a^{6} - \frac{1}{60} a^{5} - \frac{17}{180} a^{4} + \frac{41}{180} a^{3} - \frac{1}{4} a^{2} + \frac{2}{15} a$, $\frac{1}{720} a^{8} + \frac{1}{720} a^{7} + \frac{1}{180} a^{6} + \frac{7}{720} a^{5} - \frac{1}{9} a^{4} - \frac{173}{720} a^{3} + \frac{1}{240} a^{2} - \frac{13}{120} a - \frac{1}{4}$, $\frac{1}{183600} a^{9} - \frac{11}{45900} a^{8} + \frac{499}{183600} a^{7} + \frac{1183}{183600} a^{6} - \frac{2107}{36720} a^{5} + \frac{8719}{183600} a^{4} + \frac{84}{425} a^{3} + \frac{8861}{61200} a^{2} + \frac{3877}{10200} a + \frac{389}{1020}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{427}{183600} a^{9} - \frac{2213}{183600} a^{8} + \frac{2077}{45900} a^{7} - \frac{18119}{183600} a^{6} + \frac{227}{918} a^{5} + \frac{24493}{183600} a^{4} + \frac{17329}{20400} a^{3} + \frac{28411}{30600} a^{2} + \frac{9317}{5100} a + \frac{407}{255} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8605.31566738 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10 |
| The 4 conjugacy class representatives for $D_5$ |
| Character table for $D_5$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.1.8311689.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{5}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | R | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $31$ | 31.5.4.4 | $x^{5} + 10633$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 31.5.4.4 | $x^{5} + 10633$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |