Normalized defining polynomial
\( x^{10} - x^{9} + 13 x^{8} - 30 x^{7} + 164 x^{6} - 255 x^{5} + 448 x^{4} - 99 x^{3} + 106 x^{2} - 5 x + 25 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-207252522098163=-\,3^{5}\cdot 31^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(93=3\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{93}(32,·)$, $\chi_{93}(1,·)$, $\chi_{93}(2,·)$, $\chi_{93}(35,·)$, $\chi_{93}(4,·)$, $\chi_{93}(70,·)$, $\chi_{93}(8,·)$, $\chi_{93}(64,·)$, $\chi_{93}(47,·)$, $\chi_{93}(16,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{4} + \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{5} a^{8} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a$, $\frac{1}{414492635} a^{9} - \frac{26580558}{414492635} a^{8} - \frac{7346259}{82898527} a^{7} + \frac{132602042}{414492635} a^{6} - \frac{17287581}{82898527} a^{5} - \frac{163967618}{414492635} a^{4} - \frac{63821001}{414492635} a^{3} + \frac{20015554}{82898527} a^{2} - \frac{32214086}{82898527} a + \frac{13310823}{82898527}$
Class group and class number
$C_{5}$, which has order $5$
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{819337}{414492635} a^{9} + \frac{3175178}{414492635} a^{8} + \frac{6393611}{414492635} a^{7} + \frac{5496161}{82898527} a^{6} + \frac{12919128}{414492635} a^{5} + \frac{90165976}{82898527} a^{4} - \frac{672026439}{414492635} a^{3} + \frac{1740696047}{414492635} a^{2} - \frac{155456098}{414492635} a + \frac{85369285}{82898527} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 485.913224212 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.5.923521.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/37.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| $31$ | 31.5.4.1 | $x^{5} - 31$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 31.5.4.1 | $x^{5} - 31$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |