Normalized defining polynomial
\( x^{10} - x^{9} + 166 x^{8} - 166 x^{7} + 10066 x^{6} - 10066 x^{5} + 269941 x^{4} - 269941 x^{3} + 3054316 x^{2} - 3054316 x + 11407441 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1991513897770090991=-\,11^{9}\cdot 61^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(671=11\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{671}(1,·)$, $\chi_{671}(489,·)$, $\chi_{671}(426,·)$, $\chi_{671}(365,·)$, $\chi_{671}(367,·)$, $\chi_{671}(304,·)$, $\chi_{671}(306,·)$, $\chi_{671}(245,·)$, $\chi_{671}(182,·)$, $\chi_{671}(670,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{1643311} a^{6} - \frac{533624}{1643311} a^{5} + \frac{90}{1643311} a^{4} - \frac{582336}{1643311} a^{3} + \frac{2025}{1643311} a^{2} - \frac{518485}{1643311} a + \frac{6750}{1643311}$, $\frac{1}{1643311} a^{7} + \frac{105}{1643311} a^{5} - \frac{212195}{1643311} a^{4} + \frac{3150}{1643311} a^{3} + \frac{414788}{1643311} a^{2} + \frac{23625}{1643311} a - \frac{175712}{1643311}$, $\frac{1}{1643311} a^{8} - \frac{54249}{1643311} a^{5} - \frac{6300}{1643311} a^{4} + \frac{757561}{1643311} a^{3} - \frac{189000}{1643311} a^{2} + \frac{35950}{1643311} a - \frac{708750}{1643311}$, $\frac{1}{1643311} a^{9} - \frac{8100}{1643311} a^{5} + \frac{710038}{1643311} a^{4} - \frac{324000}{1643311} a^{3} - \frac{211662}{1643311} a^{2} + \frac{552872}{1643311} a - \frac{277603}{1643311}$
Class group and class number
$C_{1650}$, which has order $1650$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26.1711060094 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-671}) \), \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| $61$ | 61.10.5.2 | $x^{10} - 13845841 x^{2} + 5067577806$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |