Normalized defining polynomial
\( x^{10} - 2 x^{9} + 298 x^{8} - 474 x^{7} + 36494 x^{6} - 43586 x^{5} + 2292855 x^{4} - 1839124 x^{3} + 73858498 x^{2} - 30021400 x + 975695489 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-185391839210597561344=-\,2^{10}\cdot 11^{8}\cdot 61^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $106.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2684=2^{2}\cdot 11\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2684}(1,·)$, $\chi_{2684}(1219,·)$, $\chi_{2684}(487,·)$, $\chi_{2684}(489,·)$, $\chi_{2684}(1709,·)$, $\chi_{2684}(977,·)$, $\chi_{2684}(243,·)$, $\chi_{2684}(245,·)$, $\chi_{2684}(731,·)$, $\chi_{2684}(1951,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{893230674640273427152333} a^{9} - \frac{17120703444617546669835}{893230674640273427152333} a^{8} - \frac{201107589894259600547349}{893230674640273427152333} a^{7} - \frac{88169008740785186383908}{893230674640273427152333} a^{6} - \frac{137562463957158052385330}{893230674640273427152333} a^{5} + \frac{389856767555233527445112}{893230674640273427152333} a^{4} - \frac{357316150467460854581384}{893230674640273427152333} a^{3} - \frac{29461059406541991912990}{893230674640273427152333} a^{2} + \frac{159342711167635306248091}{893230674640273427152333} a + \frac{2006174354989667036}{161145710741525063531}$
Class group and class number
$C_{5}\times C_{7230}$, which has order $36150$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26.1711060094 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-61}) \), \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $61$ | 61.10.5.1 | $x^{10} - 7442 x^{6} + 13845841 x^{2} - 30405466836$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |