Properties

Label 10.0.18539183921...1344.1
Degree $10$
Signature $[0, 5]$
Discriminant $-\,2^{10}\cdot 11^{8}\cdot 61^{5}$
Root discriminant $106.37$
Ramified primes $2, 11, 61$
Class number $36150$ (GRH)
Class group $[5, 7230]$ (GRH)
Galois group $C_{10}$ (as 10T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![975695489, -30021400, 73858498, -1839124, 2292855, -43586, 36494, -474, 298, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^10 - 2*x^9 + 298*x^8 - 474*x^7 + 36494*x^6 - 43586*x^5 + 2292855*x^4 - 1839124*x^3 + 73858498*x^2 - 30021400*x + 975695489)
 
gp: K = bnfinit(x^10 - 2*x^9 + 298*x^8 - 474*x^7 + 36494*x^6 - 43586*x^5 + 2292855*x^4 - 1839124*x^3 + 73858498*x^2 - 30021400*x + 975695489, 1)
 

Normalized defining polynomial

\( x^{10} - 2 x^{9} + 298 x^{8} - 474 x^{7} + 36494 x^{6} - 43586 x^{5} + 2292855 x^{4} - 1839124 x^{3} + 73858498 x^{2} - 30021400 x + 975695489 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $10$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-185391839210597561344=-\,2^{10}\cdot 11^{8}\cdot 61^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $106.37$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 61$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2684=2^{2}\cdot 11\cdot 61\)
Dirichlet character group:    $\lbrace$$\chi_{2684}(1,·)$, $\chi_{2684}(1219,·)$, $\chi_{2684}(487,·)$, $\chi_{2684}(489,·)$, $\chi_{2684}(1709,·)$, $\chi_{2684}(977,·)$, $\chi_{2684}(243,·)$, $\chi_{2684}(245,·)$, $\chi_{2684}(731,·)$, $\chi_{2684}(1951,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{893230674640273427152333} a^{9} - \frac{17120703444617546669835}{893230674640273427152333} a^{8} - \frac{201107589894259600547349}{893230674640273427152333} a^{7} - \frac{88169008740785186383908}{893230674640273427152333} a^{6} - \frac{137562463957158052385330}{893230674640273427152333} a^{5} + \frac{389856767555233527445112}{893230674640273427152333} a^{4} - \frac{357316150467460854581384}{893230674640273427152333} a^{3} - \frac{29461059406541991912990}{893230674640273427152333} a^{2} + \frac{159342711167635306248091}{893230674640273427152333} a + \frac{2006174354989667036}{161145710741525063531}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{5}\times C_{7230}$, which has order $36150$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 26.1711060094 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{10}$ (as 10T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 10
The 10 conjugacy class representatives for $C_{10}$
Character table for $C_{10}$

Intermediate fields

\(\Q(\sqrt{-61}) \), \(\Q(\zeta_{11})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }$ ${\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ R ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }$ ${\href{/LocalNumberField/19.10.0.1}{10} }$ ${\href{/LocalNumberField/23.1.0.1}{1} }^{10}$ ${\href{/LocalNumberField/29.10.0.1}{10} }$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ ${\href{/LocalNumberField/47.10.0.1}{10} }$ ${\href{/LocalNumberField/53.10.0.1}{10} }$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.10.11$x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$$2$$5$$10$$C_{10}$$[2]^{5}$
$11$11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
$61$61.10.5.1$x^{10} - 7442 x^{6} + 13845841 x^{2} - 30405466836$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$