Properties

Label 10.0.178861090118400.1
Degree $10$
Signature $[0, 5]$
Discriminant $-1.789\times 10^{14}$
Root discriminant \(26.62\)
Ramified primes $2,3,5,17$
Class number $2$
Class group [2]
Galois group $(D_5 \wr C_2):C_2$ (as 10T27)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^10 - 4*x^9 + 18*x^7 - 12*x^6 - 48*x^5 + 108*x^4 - 144*x^3 + 108*x^2 - 40*x + 100)
 
gp: K = bnfinit(y^10 - 4*y^9 + 18*y^7 - 12*y^6 - 48*y^5 + 108*y^4 - 144*y^3 + 108*y^2 - 40*y + 100, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^10 - 4*x^9 + 18*x^7 - 12*x^6 - 48*x^5 + 108*x^4 - 144*x^3 + 108*x^2 - 40*x + 100);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 - 4*x^9 + 18*x^7 - 12*x^6 - 48*x^5 + 108*x^4 - 144*x^3 + 108*x^2 - 40*x + 100)
 

\( x^{10} - 4x^{9} + 18x^{7} - 12x^{6} - 48x^{5} + 108x^{4} - 144x^{3} + 108x^{2} - 40x + 100 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $10$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 5]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-178861090118400\) \(\medspace = -\,2^{8}\cdot 3^{9}\cdot 5^{2}\cdot 17^{5}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(26.62\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Ramified primes:   \(2\), \(3\), \(5\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-51}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}$, $\frac{1}{2}a^{6}$, $\frac{1}{2}a^{7}$, $\frac{1}{4}a^{8}-\frac{1}{2}a^{3}$, $\frac{1}{486020}a^{9}+\frac{18951}{486020}a^{8}-\frac{3704}{24301}a^{7}-\frac{37301}{243010}a^{6}-\frac{1433}{121505}a^{5}-\frac{12319}{243010}a^{4}+\frac{26019}{243010}a^{3}+\frac{639}{121505}a^{2}-\frac{2012}{6395}a+\frac{8814}{24301}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}$, which has order $2$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $4$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{52653}{486020}a^{9}-\frac{46781}{243010}a^{8}-\frac{11187}{24301}a^{7}+\frac{240277}{243010}a^{6}+\frac{124361}{121505}a^{5}-\frac{767647}{243010}a^{4}+\frac{490786}{121505}a^{3}-\frac{619143}{121505}a^{2}-\frac{4661}{6395}a-\frac{138461}{24301}$, $\frac{617}{97204}a^{9}+\frac{1993}{48602}a^{8}-\frac{5370}{24301}a^{7}-\frac{835}{24301}a^{6}+\frac{54253}{48602}a^{5}-\frac{18911}{48602}a^{4}-\frac{77522}{24301}a^{3}+\frac{102651}{24301}a^{2}-\frac{4611}{1279}a+\frac{71274}{24301}$, $\frac{232273}{486020}a^{9}-\frac{110508}{121505}a^{8}-\frac{94681}{48602}a^{7}+\frac{556951}{121505}a^{6}+\frac{1003517}{243010}a^{5}-\frac{3573487}{243010}a^{4}+\frac{2417096}{121505}a^{3}-\frac{3094288}{121505}a^{2}-\frac{12256}{6395}a-\frac{542446}{24301}$, $\frac{37619}{121505}a^{9}-\frac{73671}{121505}a^{8}-\frac{63639}{48602}a^{7}+\frac{747229}{243010}a^{6}+\frac{686059}{243010}a^{5}-\frac{1231832}{121505}a^{4}+\frac{1508527}{121505}a^{3}-\frac{1900371}{121505}a^{2}-\frac{18412}{6395}a-\frac{393330}{24301}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1299.85431262 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 1299.85431262 \cdot 2}{2\cdot\sqrt{178861090118400}}\cr\approx \mathstrut & 0.951778925930 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^10 - 4*x^9 + 18*x^7 - 12*x^6 - 48*x^5 + 108*x^4 - 144*x^3 + 108*x^2 - 40*x + 100)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^10 - 4*x^9 + 18*x^7 - 12*x^6 - 48*x^5 + 108*x^4 - 144*x^3 + 108*x^2 - 40*x + 100, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^10 - 4*x^9 + 18*x^7 - 12*x^6 - 48*x^5 + 108*x^4 - 144*x^3 + 108*x^2 - 40*x + 100);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 - 4*x^9 + 18*x^7 - 12*x^6 - 48*x^5 + 108*x^4 - 144*x^3 + 108*x^2 - 40*x + 100);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_5^2.C_2^2$ (as 10T27):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 400
The 16 conjugacy class representatives for $(D_5 \wr C_2):C_2$
Character table for $(D_5 \wr C_2):C_2$

Intermediate fields

\(\Q(\sqrt{-51}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 10 siblings: data not computed
Degree 20 siblings: data not computed
Degree 25 sibling: data not computed
Degree 40 siblings: data not computed
Minimal sibling: 10.0.284419350000.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }$ ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ ${\href{/padicField/13.5.0.1}{5} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }$ R ${\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{5}$ ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.10.0.1}{10} }$ ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }$ ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.5.0.1}{5} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }$ ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }$ ${\href{/padicField/59.10.0.1}{10} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.10.8.1$x^{10} + 5 x^{9} + 15 x^{8} + 30 x^{7} + 45 x^{6} + 55 x^{5} + 55 x^{4} + 10 x^{3} - 25 x^{2} - 5 x + 7$$5$$2$$8$$F_5$$[\ ]_{5}^{4}$
\(3\) Copy content Toggle raw display 3.10.9.1$x^{10} + 6$$10$$1$$9$$F_{5}\times C_2$$[\ ]_{10}^{4}$
\(5\) Copy content Toggle raw display $\Q_{5}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{5}$$x + 3$$1$$1$$0$Trivial$[\ ]$
5.4.2.2$x^{4} - 20 x^{2} + 50$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
5.4.0.1$x^{4} + 4 x^{2} + 4 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
\(17\) Copy content Toggle raw display 17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.8.4.1$x^{8} + 612 x^{7} + 140536 x^{6} + 14363966 x^{5} + 553913435 x^{4} + 345855654 x^{3} + 4032327212 x^{2} + 6379401496 x + 2294776272$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$