Normalized defining polynomial
\( x^{10} - x^{9} + 408 x^{8} - 408 x^{7} + 60644 x^{6} - 60644 x^{5} + 3960925 x^{4} - 3960925 x^{3} + 107039780 x^{2} - 107039780 x + 869823307 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-173167149654912345559=-\,11^{9}\cdot 149^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $105.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1639=11\cdot 149\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1639}(1,·)$, $\chi_{1639}(1638,·)$, $\chi_{1639}(744,·)$, $\chi_{1639}(1193,·)$, $\chi_{1639}(746,·)$, $\chi_{1639}(1042,·)$, $\chi_{1639}(597,·)$, $\chi_{1639}(893,·)$, $\chi_{1639}(446,·)$, $\chi_{1639}(895,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{99267893} a^{6} - \frac{13271470}{99267893} a^{5} + \frac{222}{99267893} a^{4} + \frac{26475375}{99267893} a^{3} + \frac{12321}{99267893} a^{2} - \frac{13090055}{99267893} a + \frac{101306}{99267893}$, $\frac{1}{99267893} a^{7} + \frac{259}{99267893} a^{5} - \frac{5295075}{99267893} a^{4} + \frac{19166}{99267893} a^{3} + \frac{10472044}{99267893} a^{2} + \frac{354571}{99267893} a - \frac{4802972}{99267893}$, $\frac{1}{99267893} a^{8} - \frac{42360600}{99267893} a^{5} - \frac{38332}{99267893} a^{4} + \frac{2834536}{99267893} a^{3} - \frac{2836568}{99267893} a^{2} + \frac{10412911}{99267893} a - \frac{26238254}{99267893}$, $\frac{1}{99267893} a^{9} - \frac{49284}{99267893} a^{5} - \frac{23562099}{99267893} a^{4} - \frac{4862688}{99267893} a^{3} - \frac{15215883}{99267893} a^{2} - \frac{1936801}{99267893} a + \frac{31929210}{99267893}$
Class group and class number
$C_{22682}$, which has order $22682$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26.1711060094 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-1639}) \), \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| $149$ | 149.10.5.2 | $x^{10} - 492884401 x^{2} + 954717084737$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |