Properties

Label 10.0.156250000000000.1
Degree $10$
Signature $[0, 5]$
Discriminant $-1.562\times 10^{14}$
Root discriminant \(26.27\)
Ramified primes $2,5$
Class number $5$
Class group [5]
Galois group $C_{10}$ (as 10T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^10 + 20*x^8 + 120*x^6 + 225*x^4 + 90*x^2 + 1)
 
gp: K = bnfinit(y^10 + 20*y^8 + 120*y^6 + 225*y^4 + 90*y^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^10 + 20*x^8 + 120*x^6 + 225*x^4 + 90*x^2 + 1);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^10 + 20*x^8 + 120*x^6 + 225*x^4 + 90*x^2 + 1)
 

\( x^{10} + 20x^{8} + 120x^{6} + 225x^{4} + 90x^{2} + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $10$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 5]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-156250000000000\) \(\medspace = -\,2^{10}\cdot 5^{16}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(26.27\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 5^{8/5}\approx 26.26527804403767$
Ramified primes:   \(2\), \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-1}) \)
$\card{ \Gal(K/\Q) }$:  $10$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(100=2^{2}\cdot 5^{2}\)
Dirichlet character group:    $\lbrace$$\chi_{100}(1,·)$, $\chi_{100}(71,·)$, $\chi_{100}(41,·)$, $\chi_{100}(11,·)$, $\chi_{100}(81,·)$, $\chi_{100}(51,·)$, $\chi_{100}(21,·)$, $\chi_{100}(91,·)$, $\chi_{100}(61,·)$, $\chi_{100}(31,·)$$\rbrace$
This is a CM field.
Reflex fields:  \(\Q(\sqrt{-1}) \), 10.0.156250000000000.1$^{15}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7}a^{6}+\frac{1}{7}$, $\frac{1}{7}a^{7}+\frac{1}{7}a$, $\frac{1}{301}a^{8}+\frac{3}{301}a^{6}+\frac{16}{43}a^{4}+\frac{127}{301}a^{2}+\frac{38}{301}$, $\frac{1}{301}a^{9}+\frac{3}{301}a^{7}+\frac{16}{43}a^{5}+\frac{127}{301}a^{3}+\frac{38}{301}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{5}$, which has order $5$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $4$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{25}{301} a^{9} - \frac{505}{301} a^{7} - \frac{443}{43} a^{5} - \frac{6185}{301} a^{3} - \frac{2885}{301} a \)  (order $4$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{26}{301}a^{8}+\frac{508}{301}a^{6}+\frac{416}{43}a^{4}+\frac{4807}{301}a^{2}+\frac{816}{301}$, $\frac{5}{301}a^{8}+\frac{101}{301}a^{6}+\frac{80}{43}a^{4}+\frac{635}{301}a^{2}-\frac{25}{301}$, $\frac{8}{301}a^{8}+\frac{153}{301}a^{6}+\frac{128}{43}a^{4}+\frac{1919}{301}a^{2}+\frac{734}{301}$, $\frac{4}{301}a^{8}+\frac{14}{43}a^{6}+\frac{107}{43}a^{4}+\frac{1712}{301}a^{2}+\frac{34}{43}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 257.113789169 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 257.113789169 \cdot 5}{4\cdot\sqrt{156250000000000}}\cr\approx \mathstrut & 0.251782018289 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^10 + 20*x^8 + 120*x^6 + 225*x^4 + 90*x^2 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^10 + 20*x^8 + 120*x^6 + 225*x^4 + 90*x^2 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^10 + 20*x^8 + 120*x^6 + 225*x^4 + 90*x^2 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 + 20*x^8 + 120*x^6 + 225*x^4 + 90*x^2 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{10}$ (as 10T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 10
The 10 conjugacy class representatives for $C_{10}$
Character table for $C_{10}$

Intermediate fields

\(\Q(\sqrt{-1}) \), 5.5.390625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.10.0.1}{10} }$ R ${\href{/padicField/7.2.0.1}{2} }^{5}$ ${\href{/padicField/11.10.0.1}{10} }$ ${\href{/padicField/13.5.0.1}{5} }^{2}$ ${\href{/padicField/17.5.0.1}{5} }^{2}$ ${\href{/padicField/19.10.0.1}{10} }$ ${\href{/padicField/23.10.0.1}{10} }$ ${\href{/padicField/29.5.0.1}{5} }^{2}$ ${\href{/padicField/31.10.0.1}{10} }$ ${\href{/padicField/37.5.0.1}{5} }^{2}$ ${\href{/padicField/41.5.0.1}{5} }^{2}$ ${\href{/padicField/43.2.0.1}{2} }^{5}$ ${\href{/padicField/47.10.0.1}{10} }$ ${\href{/padicField/53.5.0.1}{5} }^{2}$ ${\href{/padicField/59.10.0.1}{10} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.10.10.7$x^{10} + 10 x^{9} + 50 x^{8} + 160 x^{7} + 360 x^{6} + 592 x^{5} + 656 x^{4} + 384 x^{3} - 112 x^{2} - 352 x - 1248$$2$$5$$10$$C_{10}$$[2]^{5}$
\(5\) Copy content Toggle raw display 5.5.8.2$x^{5} + 20 x^{4} + 5$$5$$1$$8$$C_5$$[2]$
5.5.8.2$x^{5} + 20 x^{4} + 5$$5$$1$$8$$C_5$$[2]$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
* 1.4.2t1.a.a$1$ $ 2^{2}$ \(\Q(\sqrt{-1}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.25.5t1.a.c$1$ $ 5^{2}$ 5.5.390625.1 $C_5$ (as 5T1) $0$ $1$
* 1.100.10t1.a.d$1$ $ 2^{2} \cdot 5^{2}$ 10.0.156250000000000.1 $C_{10}$ (as 10T1) $0$ $-1$
* 1.25.5t1.a.a$1$ $ 5^{2}$ 5.5.390625.1 $C_5$ (as 5T1) $0$ $1$
* 1.100.10t1.a.b$1$ $ 2^{2} \cdot 5^{2}$ 10.0.156250000000000.1 $C_{10}$ (as 10T1) $0$ $-1$
* 1.25.5t1.a.d$1$ $ 5^{2}$ 5.5.390625.1 $C_5$ (as 5T1) $0$ $1$
* 1.100.10t1.a.c$1$ $ 2^{2} \cdot 5^{2}$ 10.0.156250000000000.1 $C_{10}$ (as 10T1) $0$ $-1$
* 1.25.5t1.a.b$1$ $ 5^{2}$ 5.5.390625.1 $C_5$ (as 5T1) $0$ $1$
* 1.100.10t1.a.a$1$ $ 2^{2} \cdot 5^{2}$ 10.0.156250000000000.1 $C_{10}$ (as 10T1) $0$ $-1$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.