Normalized defining polynomial
\( x^{10} - 72160 x^{7} + 836605 x^{6} + 84944046 x^{5} + 2025226775 x^{4} + 44322002450 x^{3} + 520459612695 x^{2} + 2292431710140 x + 7057003038899 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-14364651494456106498421478271484375=-\,5^{17}\cdot 11^{9}\cdot 41^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2604.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(11275=5^{2}\cdot 11\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{11275}(1,·)$, $\chi_{11275}(2989,·)$, $\chi_{11275}(3659,·)$, $\chi_{11275}(4321,·)$, $\chi_{11275}(4711,·)$, $\chi_{11275}(4856,·)$, $\chi_{11275}(5594,·)$, $\chi_{11275}(9349,·)$, $\chi_{11275}(9979,·)$, $\chi_{11275}(10916,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{246} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{738} a^{6} - \frac{1}{738} a^{5} + \frac{1}{18} a^{4} + \frac{1}{3} a^{3} - \frac{2}{9} a^{2} - \frac{4}{9} a + \frac{1}{18}$, $\frac{1}{12546} a^{7} - \frac{1}{6273} a^{6} - \frac{1}{2091} a^{5} - \frac{13}{306} a^{4} + \frac{49}{153} a^{3} + \frac{25}{153} a^{2} + \frac{1}{102} a - \frac{19}{306}$, $\frac{1}{61312302} a^{8} - \frac{491}{61312302} a^{7} + \frac{16279}{30656151} a^{6} - \frac{26635}{61312302} a^{5} - \frac{119957}{1495422} a^{4} + \frac{16928}{43983} a^{3} + \frac{732325}{1495422} a^{2} + \frac{320387}{747711} a + \frac{188573}{1495422}$, $\frac{1}{5376358847572707335389960521108222} a^{9} - \frac{1953781250360275913911285}{5376358847572707335389960521108222} a^{8} + \frac{897473773045439914554185269}{35139600310932727682287323667374} a^{7} + \frac{1106825450108489197479979772}{2688179423786353667694980260554111} a^{6} - \frac{253885513905739772840433348334}{141483127567702824615525276871269} a^{5} + \frac{365069032285533426235561818064}{21855117266555720875568945207757} a^{4} - \frac{2150232670782033617785509286525}{43710234533111441751137890415514} a^{3} - \frac{28982294047134649181611151123573}{65565351799667162626706835623271} a^{2} + \frac{7944719946519422631002556038920}{21855117266555720875568945207757} a - \frac{13954698636305275967371109711399}{65565351799667162626706835623271}$
Class group and class number
$C_{5}\times C_{2055020}$, which has order $10275100$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1487469.5436229876 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-55}) \), 5.5.16160924531640625.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{5}$ | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.17.5 | $x^{10} - 5 x^{8} + 55$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ |
| $11$ | 11.10.9.9 | $x^{10} + 297$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| $41$ | 41.10.8.3 | $x^{10} + 943 x^{5} + 242064$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |