Properties

Label 10.0.1379687283212183.1
Degree $10$
Signature $[0, 5]$
Discriminant $-\,11^{8}\cdot 23^{5}$
Root discriminant $32.66$
Ramified primes $11, 23$
Class number $48$
Class group $[2, 2, 2, 6]$
Galois group $C_{10}$ (as 10T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![22793, -5129, 10496, -2373, 2334, -484, 310, -52, 24, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^10 - 3*x^9 + 24*x^8 - 52*x^7 + 310*x^6 - 484*x^5 + 2334*x^4 - 2373*x^3 + 10496*x^2 - 5129*x + 22793)
 
gp: K = bnfinit(x^10 - 3*x^9 + 24*x^8 - 52*x^7 + 310*x^6 - 484*x^5 + 2334*x^4 - 2373*x^3 + 10496*x^2 - 5129*x + 22793, 1)
 

Normalized defining polynomial

\( x^{10} - 3 x^{9} + 24 x^{8} - 52 x^{7} + 310 x^{6} - 484 x^{5} + 2334 x^{4} - 2373 x^{3} + 10496 x^{2} - 5129 x + 22793 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $10$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-1379687283212183=-\,11^{8}\cdot 23^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $32.66$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(253=11\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{253}(1,·)$, $\chi_{253}(229,·)$, $\chi_{253}(70,·)$, $\chi_{253}(137,·)$, $\chi_{253}(45,·)$, $\chi_{253}(47,·)$, $\chi_{253}(114,·)$, $\chi_{253}(185,·)$, $\chi_{253}(91,·)$, $\chi_{253}(93,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{216075439731647} a^{9} + \frac{99861142670429}{216075439731647} a^{8} - \frac{7700931232361}{216075439731647} a^{7} + \frac{65459181339993}{216075439731647} a^{6} + \frac{20510053864163}{216075439731647} a^{5} - \frac{45531532853043}{216075439731647} a^{4} - \frac{102497817056655}{216075439731647} a^{3} - \frac{33021371757763}{216075439731647} a^{2} + \frac{94932801463561}{216075439731647} a - \frac{15911734387167}{216075439731647}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{6}$, which has order $48$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 26.1711060094 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{10}$ (as 10T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 10
The 10 conjugacy class representatives for $C_{10}$
Character table for $C_{10}$

Intermediate fields

\(\Q(\sqrt{-23}) \), \(\Q(\zeta_{11})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/5.10.0.1}{10} }$ ${\href{/LocalNumberField/7.10.0.1}{10} }$ R ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }$ ${\href{/LocalNumberField/19.10.0.1}{10} }$ R ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$11$11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
$23$23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.23.2t1.1c1$1$ $ 23 $ $x^{2} - x + 6$ $C_2$ (as 2T1) $1$ $-1$
* 1.11.5t1.1c1$1$ $ 11 $ $x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1$ $C_5$ (as 5T1) $0$ $1$
* 1.11_23.10t1.1c1$1$ $ 11 \cdot 23 $ $x^{10} - 3 x^{9} + 24 x^{8} - 52 x^{7} + 310 x^{6} - 484 x^{5} + 2334 x^{4} - 2373 x^{3} + 10496 x^{2} - 5129 x + 22793$ $C_{10}$ (as 10T1) $0$ $-1$
* 1.11.5t1.1c2$1$ $ 11 $ $x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1$ $C_5$ (as 5T1) $0$ $1$
* 1.11_23.10t1.1c2$1$ $ 11 \cdot 23 $ $x^{10} - 3 x^{9} + 24 x^{8} - 52 x^{7} + 310 x^{6} - 484 x^{5} + 2334 x^{4} - 2373 x^{3} + 10496 x^{2} - 5129 x + 22793$ $C_{10}$ (as 10T1) $0$ $-1$
* 1.11.5t1.1c3$1$ $ 11 $ $x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1$ $C_5$ (as 5T1) $0$ $1$
* 1.11_23.10t1.1c3$1$ $ 11 \cdot 23 $ $x^{10} - 3 x^{9} + 24 x^{8} - 52 x^{7} + 310 x^{6} - 484 x^{5} + 2334 x^{4} - 2373 x^{3} + 10496 x^{2} - 5129 x + 22793$ $C_{10}$ (as 10T1) $0$ $-1$
* 1.11.5t1.1c4$1$ $ 11 $ $x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1$ $C_5$ (as 5T1) $0$ $1$
* 1.11_23.10t1.1c4$1$ $ 11 \cdot 23 $ $x^{10} - 3 x^{9} + 24 x^{8} - 52 x^{7} + 310 x^{6} - 484 x^{5} + 2334 x^{4} - 2373 x^{3} + 10496 x^{2} - 5129 x + 22793$ $C_{10}$ (as 10T1) $0$ $-1$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.