Normalized defining polynomial
\( x^{10} - x^{9} + 386 x^{8} - 386 x^{7} + 54286 x^{6} - 54286 x^{5} + 3355661 x^{4} - 3355661 x^{3} + 85890036 x^{2} - 85890036 x + 663630661 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-131410397716621007391=-\,3^{5}\cdot 11^{9}\cdot 47^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $102.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1551=3\cdot 11\cdot 47\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1551}(1,·)$, $\chi_{1551}(1411,·)$, $\chi_{1551}(140,·)$, $\chi_{1551}(1550,·)$, $\chi_{1551}(563,·)$, $\chi_{1551}(565,·)$, $\chi_{1551}(1270,·)$, $\chi_{1551}(281,·)$, $\chi_{1551}(986,·)$, $\chi_{1551}(988,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{76566491} a^{6} - \frac{10814804}{76566491} a^{5} + \frac{210}{76566491} a^{4} + \frac{21571575}{76566491} a^{3} + \frac{11025}{76566491} a^{2} - \frac{10659785}{76566491} a + \frac{85750}{76566491}$, $\frac{1}{76566491} a^{7} + \frac{245}{76566491} a^{5} - \frac{4314315}{76566491} a^{4} + \frac{17150}{76566491} a^{3} + \frac{8527828}{76566491} a^{2} + \frac{300125}{76566491} a - \frac{3895992}{76566491}$, $\frac{1}{76566491} a^{8} - \frac{34514520}{76566491} a^{5} - \frac{34300}{76566491} a^{4} + \frac{6579832}{76566491} a^{3} - \frac{2401000}{76566491} a^{2} + \frac{4490639}{76566491} a - \frac{21008750}{76566491}$, $\frac{1}{76566491} a^{9} - \frac{44100}{76566491} a^{5} - \frac{19187613}{76566491} a^{4} - \frac{4116000}{76566491} a^{3} - \frac{8386631}{76566491} a^{2} - \frac{4467259}{76566491} a + \frac{18946886}{76566491}$
Class group and class number
$C_{2}\times C_{13136}$, which has order $26272$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26.1711060094 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-1551}) \), \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ | R | ${\href{/LocalNumberField/53.10.0.1}{10} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| $11$ | 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| $47$ | 47.10.5.1 | $x^{10} - 4418 x^{6} + 4879681 x^{2} - 2064105063$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |