Normalized defining polynomial
\( x^{10} - 11 x^{8} + 31 x^{6} + 303 x^{4} - 1908 x^{2} + 3888 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-121559878349523=-\,3^{5}\cdot 29^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{12} a^{4} - \frac{1}{12} a^{2}$, $\frac{1}{72} a^{5} - \frac{1}{24} a^{4} + \frac{17}{72} a^{3} + \frac{1}{24} a^{2} - \frac{5}{12} a - \frac{1}{2}$, $\frac{1}{72} a^{6} + \frac{1}{36} a^{4} - \frac{1}{4} a^{3} - \frac{5}{24} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{144} a^{7} - \frac{1}{24} a^{4} - \frac{13}{144} a^{3} + \frac{1}{24} a^{2} + \frac{5}{12} a$, $\frac{1}{288} a^{8} - \frac{1}{144} a^{6} - \frac{11}{288} a^{4} + \frac{1}{24} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{1728} a^{9} - \frac{1}{576} a^{8} - \frac{1}{864} a^{7} + \frac{1}{288} a^{6} - \frac{11}{1728} a^{5} + \frac{11}{576} a^{4} + \frac{1}{144} a^{3} + \frac{11}{48} a^{2} - \frac{1}{2} a + \frac{1}{4}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1}{864} a^{9} + \frac{1}{108} a^{7} - \frac{1}{864} a^{5} - \frac{49}{144} a^{3} + \frac{5}{6} a + \frac{1}{2} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31666.976075 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10 |
| The 4 conjugacy class representatives for $D_5$ |
| Character table for $D_5$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.1.6365529.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{5}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | R | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $29$ | 29.10.8.1 | $x^{10} - 899 x^{5} + 204363$ | $5$ | $2$ | $8$ | $D_5$ | $[\ ]_{5}^{2}$ |