Normalized defining polynomial
\( x^{10} + 10 x^{8} - 10 x^{7} + 240 x^{6} + 158 x^{5} + 3185 x^{4} + 3040 x^{3} + 22730 x^{2} + 8740 x + 68257 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1215000000000000000=-\,2^{15}\cdot 3^{5}\cdot 5^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(600=2^{3}\cdot 3\cdot 5^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{600}(1,·)$, $\chi_{600}(581,·)$, $\chi_{600}(481,·)$, $\chi_{600}(361,·)$, $\chi_{600}(461,·)$, $\chi_{600}(241,·)$, $\chi_{600}(341,·)$, $\chi_{600}(121,·)$, $\chi_{600}(221,·)$, $\chi_{600}(101,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} + \frac{2}{7} a^{5} - \frac{3}{7} a^{4} + \frac{1}{7} a^{3} + \frac{2}{7} a^{2} - \frac{3}{7} a$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{49} a^{8} + \frac{1}{49} a^{7} + \frac{3}{49} a^{6} - \frac{15}{49} a^{5} + \frac{5}{49} a^{4} - \frac{11}{49} a^{3} - \frac{2}{49} a^{2} - \frac{10}{49} a$, $\frac{1}{29185959915049} a^{9} - \frac{201322355236}{29185959915049} a^{8} - \frac{10702865471}{595631835001} a^{7} + \frac{1990656459677}{29185959915049} a^{6} - \frac{2233253187367}{29185959915049} a^{5} - \frac{1127009795574}{29185959915049} a^{4} + \frac{10294153852762}{29185959915049} a^{3} - \frac{6075357562180}{29185959915049} a^{2} - \frac{13752437758064}{29185959915049} a - \frac{68426177}{427589257}$
Class group and class number
$C_{1010}$, which has order $1010$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 257.113789169 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-6}) \), 5.5.390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.5 | $x^{10} + 14 x^{8} + 40 x^{6} - 144 x^{4} - 432 x^{2} + 33632$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| $5$ | 5.5.8.2 | $x^{5} - 5 x^{4} + 5$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ |
| 5.5.8.2 | $x^{5} - 5 x^{4} + 5$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ |