Properties

Label 10.0.10119070675...4783.1
Degree $10$
Signature $[0, 5]$
Discriminant $-\,3^{5}\cdot 11^{8}\cdot 181^{5}$
Root discriminant $158.68$
Ramified primes $3, 11, 181$
Class number $240852$ (GRH)
Class group $[240852]$ (GRH)
Galois group $C_{10}$ (as 10T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![49310761543, -1041379749, 1755844186, -30039653, 25264714, -328344, 183610, -1612, 674, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^10 - 3*x^9 + 674*x^8 - 1612*x^7 + 183610*x^6 - 328344*x^5 + 25264714*x^4 - 30039653*x^3 + 1755844186*x^2 - 1041379749*x + 49310761543)
 
gp: K = bnfinit(x^10 - 3*x^9 + 674*x^8 - 1612*x^7 + 183610*x^6 - 328344*x^5 + 25264714*x^4 - 30039653*x^3 + 1755844186*x^2 - 1041379749*x + 49310761543, 1)
 

Normalized defining polynomial

\( x^{10} - 3 x^{9} + 674 x^{8} - 1612 x^{7} + 183610 x^{6} - 328344 x^{5} + 25264714 x^{4} - 30039653 x^{3} + 1755844186 x^{2} - 1041379749 x + 49310761543 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $10$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-10119070675735060734783=-\,3^{5}\cdot 11^{8}\cdot 181^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $158.68$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 11, 181$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(5973=3\cdot 11\cdot 181\)
Dirichlet character group:    $\lbrace$$\chi_{5973}(544,·)$, $\chi_{5973}(1,·)$, $\chi_{5973}(2171,·)$, $\chi_{5973}(3800,·)$, $\chi_{5973}(4343,·)$, $\chi_{5973}(4888,·)$, $\chi_{5973}(3257,·)$, $\chi_{5973}(3259,·)$, $\chi_{5973}(542,·)$, $\chi_{5973}(1087,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2415091746350436987336334327} a^{9} + \frac{1184781283159851965888257826}{2415091746350436987336334327} a^{8} - \frac{1144687544148562651156236683}{2415091746350436987336334327} a^{7} - \frac{249710387847637915368752461}{2415091746350436987336334327} a^{6} + \frac{174867585300768721591522188}{2415091746350436987336334327} a^{5} + \frac{340512702815338095143211591}{2415091746350436987336334327} a^{4} + \frac{1084115708173080731651434337}{2415091746350436987336334327} a^{3} - \frac{816375269090465597370563194}{2415091746350436987336334327} a^{2} + \frac{1052658595904328006951351668}{2415091746350436987336334327} a + \frac{1148186339044438074971557496}{2415091746350436987336334327}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{240852}$, which has order $240852$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $4$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 26.1711060094 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{10}$ (as 10T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 10
The 10 conjugacy class representatives for $C_{10}$
Character table for $C_{10}$

Intermediate fields

\(\Q(\sqrt{-543}) \), \(\Q(\zeta_{11})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ R ${\href{/LocalNumberField/5.10.0.1}{10} }$ ${\href{/LocalNumberField/7.10.0.1}{10} }$ R ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }$ ${\href{/LocalNumberField/23.1.0.1}{1} }^{10}$ ${\href{/LocalNumberField/29.10.0.1}{10} }$ ${\href{/LocalNumberField/31.10.0.1}{10} }$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.10.5.2$x^{10} - 81 x^{2} + 243$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
$11$11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
$181$181.10.5.1$x^{10} - 65522 x^{6} + 1073283121 x^{2} - 19426424490100$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$