Normalized defining polynomial
\( x^{10} - 3 x^{9} + 674 x^{8} - 1612 x^{7} + 183610 x^{6} - 328344 x^{5} + 25264714 x^{4} - 30039653 x^{3} + 1755844186 x^{2} - 1041379749 x + 49310761543 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-10119070675735060734783=-\,3^{5}\cdot 11^{8}\cdot 181^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $158.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(5973=3\cdot 11\cdot 181\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{5973}(544,·)$, $\chi_{5973}(1,·)$, $\chi_{5973}(2171,·)$, $\chi_{5973}(3800,·)$, $\chi_{5973}(4343,·)$, $\chi_{5973}(4888,·)$, $\chi_{5973}(3257,·)$, $\chi_{5973}(3259,·)$, $\chi_{5973}(542,·)$, $\chi_{5973}(1087,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2415091746350436987336334327} a^{9} + \frac{1184781283159851965888257826}{2415091746350436987336334327} a^{8} - \frac{1144687544148562651156236683}{2415091746350436987336334327} a^{7} - \frac{249710387847637915368752461}{2415091746350436987336334327} a^{6} + \frac{174867585300768721591522188}{2415091746350436987336334327} a^{5} + \frac{340512702815338095143211591}{2415091746350436987336334327} a^{4} + \frac{1084115708173080731651434337}{2415091746350436987336334327} a^{3} - \frac{816375269090465597370563194}{2415091746350436987336334327} a^{2} + \frac{1052658595904328006951351668}{2415091746350436987336334327} a + \frac{1148186339044438074971557496}{2415091746350436987336334327}$
Class group and class number
$C_{240852}$, which has order $240852$ (assuming GRH)
Unit group
| Rank: | $4$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26.1711060094 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 10 |
| The 10 conjugacy class representatives for $C_{10}$ |
| Character table for $C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-543}) \), \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| $181$ | 181.10.5.1 | $x^{10} - 65522 x^{6} + 1073283121 x^{2} - 19426424490100$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |