Learn more about

Refine search


Results (1-50 of 1041 matches)

Next
Label Base field Level Dimension
11.1-a \(\Q(\zeta_{11})^+\) $[11, 11, w^{4} + w^{3} - 4w^{2} - 3w + 2]$ $1$
23.1-a \(\Q(\zeta_{11})^+\) $[23, 23, -w^{4} + 3w^{2} + 1]$ $1$
23.2-a \(\Q(\zeta_{11})^+\) $[23,23,w^{4} - 3w^{2} - w + 2]$ $1$
23.3-a \(\Q(\zeta_{11})^+\) $[23,23,w^{4} - w^{3} - 3w^{2} + 3w + 2]$ $1$
23.4-a \(\Q(\zeta_{11})^+\) $[23,23,-w^{4} + w^{3} + 4w^{2} - 3w - 1]$ $1$
23.5-a \(\Q(\zeta_{11})^+\) $[23,23,-w^{2} + w + 3]$ $1$
32.1-a \(\Q(\zeta_{11})^+\) $[32, 2, 2]$ $2$
43.1-a \(\Q(\zeta_{11})^+\) $[43, 43, -2w^{4} + w^{3} + 6w^{2} - 2w - 1]$ $1$
43.1-b \(\Q(\zeta_{11})^+\) $[43, 43, -2w^{4} + w^{3} + 6w^{2} - 2w - 1]$ $1$
43.2-a \(\Q(\zeta_{11})^+\) $[43,43,w^{4} - 2w^{2} - w - 1]$ $1$
43.2-b \(\Q(\zeta_{11})^+\) $[43,43,w^{4} - 2w^{2} - w - 1]$ $1$
43.3-a \(\Q(\zeta_{11})^+\) $[43,43,-w^{3} - w^{2} + 4w + 2]$ $1$
43.3-b \(\Q(\zeta_{11})^+\) $[43,43,-w^{3} - w^{2} + 4w + 2]$ $1$
43.4-a \(\Q(\zeta_{11})^+\) $[43,43,2w^{4} - w^{3} - 7w^{2} + 3w + 3]$ $1$
43.4-b \(\Q(\zeta_{11})^+\) $[43,43,2w^{4} - w^{3} - 7w^{2} + 3w + 3]$ $1$
43.5-a \(\Q(\zeta_{11})^+\) $[43,43,-w^{4} + w^{3} + 4w^{2} - 4w - 2]$ $1$
43.5-b \(\Q(\zeta_{11})^+\) $[43,43,-w^{4} + w^{3} + 4w^{2} - 4w - 2]$ $1$
67.1-a \(\Q(\zeta_{11})^+\) $[67, 67, 2w^{4} - 7w^{2} + 2]$ $2$
67.2-a \(\Q(\zeta_{11})^+\) $[67,67,2w^{2} - w - 4]$ $2$
67.3-a \(\Q(\zeta_{11})^+\) $[67,67,-w^{4} + w^{3} + 3w^{2} - 4w - 1]$ $2$
67.4-a \(\Q(\zeta_{11})^+\) $[67,67,w^{4} - 2w^{3} - 4w^{2} + 6w + 2]$ $2$
67.5-a \(\Q(\zeta_{11})^+\) $[67,67,-2w^{4} + w^{3} + 6w^{2} - w - 2]$ $2$
89.1-a \(\Q(\zeta_{11})^+\) $[89, 89, w^{3} + w^{2} - 4w - 1]$ $3$
89.2-a \(\Q(\zeta_{11})^+\) $[89,89,-2w^{4} + w^{3} + 7w^{2} - 3w - 2]$ $3$
89.3-a \(\Q(\zeta_{11})^+\) $[89,89,w^{4} - w^{3} - 4w^{2} + 4w + 3]$ $3$
89.4-a \(\Q(\zeta_{11})^+\) $[89,89,-w^{4} + 2w^{2} + w + 2]$ $3$
89.5-a \(\Q(\zeta_{11})^+\) $[89,89,2w^{4} - w^{3} - 6w^{2} + 2w + 2]$ $3$
109.1-a \(\Q(\zeta_{11})^+\) $[109, 109, -w^{3} + 2w^{2} + 3w - 3]$ $4$
109.2-a \(\Q(\zeta_{11})^+\) $[109,109,w^{4} - 4w^{2} - 2w + 3]$ $4$
109.3-a \(\Q(\zeta_{11})^+\) $[109,109,-2w^{4} + 2w^{3} + 7w^{2} - 4w - 3]$ $4$
109.4-a \(\Q(\zeta_{11})^+\) $[109,109,-2w^{3} + 5w + 1]$ $4$
109.5-a \(\Q(\zeta_{11})^+\) $[109,109,w^{4} + w^{3} - 5w^{2} - 2w + 4]$ $4$
121.1-a \(\Q(\zeta_{11})^+\) $[121, 11, w^{4} + w^{3} - 3w^{2} - 3w - 2]$ $1$
121.1-b \(\Q(\zeta_{11})^+\) $[121, 11, w^{4} + w^{3} - 3w^{2} - 3w - 2]$ $1$
121.1-c \(\Q(\zeta_{11})^+\) $[121, 11, w^{4} + w^{3} - 3w^{2} - 3w - 2]$ $1$
121.1-d \(\Q(\zeta_{11})^+\) $[121, 11, w^{4} + w^{3} - 3w^{2} - 3w - 2]$ $1$
131.1-a \(\Q(\zeta_{11})^+\) $[131, 131, w^{4} - 3w^{3} - 2w^{2} + 7w]$ $1$
131.1-b \(\Q(\zeta_{11})^+\) $[131, 131, w^{4} - 3w^{3} - 2w^{2} + 7w]$ $5$
131.2-a \(\Q(\zeta_{11})^+\) $[131,131,-2w^{4} + 9w^{2} + w - 6]$ $1$
131.2-b \(\Q(\zeta_{11})^+\) $[131,131,-2w^{4} + 9w^{2} + w - 6]$ $5$
131.3-a \(\Q(\zeta_{11})^+\) $[131,131,w^{4} + 2w^{3} - 5w^{2} - 6w + 4]$ $1$
131.3-b \(\Q(\zeta_{11})^+\) $[131,131,w^{4} + 2w^{3} - 5w^{2} - 6w + 4]$ $5$
131.4-a \(\Q(\zeta_{11})^+\) $[131,131,-w^{4} + 2w^{3} + 3w^{2} - 3w - 1]$ $1$
131.4-b \(\Q(\zeta_{11})^+\) $[131,131,-w^{4} + 2w^{3} + 3w^{2} - 3w - 1]$ $5$
131.5-a \(\Q(\zeta_{11})^+\) $[131,131,w^{4} - w^{3} - 5w^{2} + w + 5]$ $1$
131.5-b \(\Q(\zeta_{11})^+\) $[131,131,w^{4} - w^{3} - 5w^{2} + w + 5]$ $5$
197.1-a \(\Q(\zeta_{11})^+\) $[197, 197, 3w^{4} - w^{3} - 10w^{2} + w + 5]$ $1$
197.1-b \(\Q(\zeta_{11})^+\) $[197, 197, 3w^{4} - w^{3} - 10w^{2} + w + 5]$ $1$
197.1-c \(\Q(\zeta_{11})^+\) $[197, 197, 3w^{4} - w^{3} - 10w^{2} + w + 5]$ $1$
197.1-d \(\Q(\zeta_{11})^+\) $[197, 197, 3w^{4} - w^{3} - 10w^{2} + w + 5]$ $1$
Next