1.1-a |
4.4.19821.1 |
$[1, 1, 1]$ |
$6$ |
3.1-a |
4.4.19821.1 |
$[3, 3, w]$ |
$1$ |
3.1-b |
4.4.19821.1 |
$[3, 3, w]$ |
$3$ |
7.1-a |
4.4.19821.1 |
$[7, 7, \frac{1}{3}w^{3} - \frac{2}{3}w^{2} - 2w + 2]$ |
$2$ |
7.1-b |
4.4.19821.1 |
$[7, 7, \frac{1}{3}w^{3} - \frac{2}{3}w^{2} - 2w + 2]$ |
$3$ |
7.1-c |
4.4.19821.1 |
$[7, 7, \frac{1}{3}w^{3} - \frac{2}{3}w^{2} - 2w + 2]$ |
$4$ |
7.1-d |
4.4.19821.1 |
$[7, 7, \frac{1}{3}w^{3} - \frac{2}{3}w^{2} - 2w + 2]$ |
$6$ |
9.1-a |
4.4.19821.1 |
$[9, 3, \frac{1}{3}w^{3} - \frac{2}{3}w^{2} - 2w + 4]$ |
$1$ |
9.1-b |
4.4.19821.1 |
$[9, 3, \frac{1}{3}w^{3} - \frac{2}{3}w^{2} - 2w + 4]$ |
$3$ |
9.1-c |
4.4.19821.1 |
$[9, 3, \frac{1}{3}w^{3} - \frac{2}{3}w^{2} - 2w + 4]$ |
$4$ |
9.1-d |
4.4.19821.1 |
$[9, 3, \frac{1}{3}w^{3} - \frac{2}{3}w^{2} - 2w + 4]$ |
$4$ |
9.1-e |
4.4.19821.1 |
$[9, 3, \frac{1}{3}w^{3} - \frac{2}{3}w^{2} - 2w + 4]$ |
$6$ |
9.2-a |
4.4.19821.1 |
$[9, 3, w + 1]$ |
$6$ |
9.2-b |
4.4.19821.1 |
$[9, 3, w + 1]$ |
$14$ |
13.1-a |
4.4.19821.1 |
$[13, 13, \frac{2}{3}w^{3} - \frac{1}{3}w^{2} - 5w]$ |
$13$ |
13.1-b |
4.4.19821.1 |
$[13, 13, \frac{2}{3}w^{3} - \frac{1}{3}w^{2} - 5w]$ |
$21$ |
16.1-a |
4.4.19821.1 |
$[16, 2, 2]$ |
$15$ |
16.1-b |
4.4.19821.1 |
$[16, 2, 2]$ |
$26$ |
17.1-a |
4.4.19821.1 |
$[17, 17, \frac{1}{3}w^{3} - \frac{2}{3}w^{2} - 3w + 5]$ |
$1$ |
17.1-b |
4.4.19821.1 |
$[17, 17, \frac{1}{3}w^{3} - \frac{2}{3}w^{2} - 3w + 5]$ |
$17$ |
17.1-c |
4.4.19821.1 |
$[17, 17, \frac{1}{3}w^{3} - \frac{2}{3}w^{2} - 3w + 5]$ |
$21$ |
19.1-a |
4.4.19821.1 |
$[19, 19, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + 2w - 5]$ |
$18$ |
19.1-b |
4.4.19821.1 |
$[19, 19, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + 2w - 5]$ |
$30$ |
21.1-a |
4.4.19821.1 |
$[21, 21, \frac{2}{3}w^{3} - \frac{1}{3}w^{2} - 5w - 1]$ |
$1$ |
21.1-b |
4.4.19821.1 |
$[21, 21, \frac{2}{3}w^{3} - \frac{1}{3}w^{2} - 5w - 1]$ |
$2$ |
21.1-c |
4.4.19821.1 |
$[21, 21, \frac{2}{3}w^{3} - \frac{1}{3}w^{2} - 5w - 1]$ |
$3$ |
21.1-d |
4.4.19821.1 |
$[21, 21, \frac{2}{3}w^{3} - \frac{1}{3}w^{2} - 5w - 1]$ |
$5$ |
21.1-e |
4.4.19821.1 |
$[21, 21, \frac{2}{3}w^{3} - \frac{1}{3}w^{2} - 5w - 1]$ |
$6$ |
21.1-f |
4.4.19821.1 |
$[21, 21, \frac{2}{3}w^{3} - \frac{1}{3}w^{2} - 5w - 1]$ |
$9$ |
21.1-g |
4.4.19821.1 |
$[21, 21, \frac{2}{3}w^{3} - \frac{1}{3}w^{2} - 5w - 1]$ |
$11$ |
23.1-a |
4.4.19821.1 |
$[23, 23, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + 3w - 2]$ |
$21$ |
23.1-b |
4.4.19821.1 |
$[23, 23, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + 3w - 2]$ |
$32$ |
25.1-a |
4.4.19821.1 |
$[25, 5, \frac{1}{3}w^{3} + \frac{1}{3}w^{2} - 3w]$ |
$1$ |
25.1-b |
4.4.19821.1 |
$[25, 5, \frac{1}{3}w^{3} + \frac{1}{3}w^{2} - 3w]$ |
$2$ |
25.1-c |
4.4.19821.1 |
$[25, 5, \frac{1}{3}w^{3} + \frac{1}{3}w^{2} - 3w]$ |
$25$ |
25.1-d |
4.4.19821.1 |
$[25, 5, \frac{1}{3}w^{3} + \frac{1}{3}w^{2} - 3w]$ |
$39$ |
25.2-a |
4.4.19821.1 |
$[25, 5, -\frac{2}{3}w^{3} + \frac{1}{3}w^{2} + 5w - 3]$ |
$4$ |
25.2-b |
4.4.19821.1 |
$[25, 5, -\frac{2}{3}w^{3} + \frac{1}{3}w^{2} + 5w - 3]$ |
$28$ |
25.2-c |
4.4.19821.1 |
$[25, 5, -\frac{2}{3}w^{3} + \frac{1}{3}w^{2} + 5w - 3]$ |
$35$ |
27.1-a |
4.4.19821.1 |
$[27, 3, -w^{3} + w^{2} + 8w - 6]$ |
$9$ |
27.1-b |
4.4.19821.1 |
$[27, 3, -w^{3} + w^{2} + 8w - 6]$ |
$9$ |
27.1-c |
4.4.19821.1 |
$[27, 3, -w^{3} + w^{2} + 8w - 6]$ |
$12$ |
27.1-d |
4.4.19821.1 |
$[27, 3, -w^{3} + w^{2} + 8w - 6]$ |
$13$ |
27.2-a |
4.4.19821.1 |
$[27, 9, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + 2w - 1]$ |
$1$ |
27.2-b |
4.4.19821.1 |
$[27, 9, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + 2w - 1]$ |
$1$ |
27.2-c |
4.4.19821.1 |
$[27, 9, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + 2w - 1]$ |
$1$ |
27.2-d |
4.4.19821.1 |
$[27, 9, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + 2w - 1]$ |
$1$ |
27.2-e |
4.4.19821.1 |
$[27, 9, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + 2w - 1]$ |
$1$ |
27.2-f |
4.4.19821.1 |
$[27, 9, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + 2w - 1]$ |
$1$ |
27.2-g |
4.4.19821.1 |
$[27, 9, -\frac{1}{3}w^{3} + \frac{2}{3}w^{2} + 2w - 1]$ |
$4$ |