1.1-a |
4.4.16225.1 |
$[1, 1, 1]$ |
$6$ |
4.1-a |
4.4.16225.1 |
$[4, 2, \frac{1}{3}w^{3} - \frac{4}{3}w^{2} - \frac{4}{3}w + 6]$ |
$2$ |
4.1-b |
4.4.16225.1 |
$[4, 2, \frac{1}{3}w^{3} - \frac{4}{3}w^{2} - \frac{4}{3}w + 6]$ |
$2$ |
4.2-a |
4.4.16225.1 |
$[4,2,\frac{1}{3}w^{3} + \frac{2}{3}w^{2} - \frac{10}{3}w - 7]$ |
$2$ |
4.2-b |
4.4.16225.1 |
$[4,2,\frac{1}{3}w^{3} + \frac{2}{3}w^{2} - \frac{10}{3}w - 7]$ |
$2$ |
9.1-a |
4.4.16225.1 |
$[9, 3, -\frac{1}{2}w^{3} + \frac{3}{2}w^{2} + \frac{7}{2}w - 9]$ |
$2$ |
9.1-b |
4.4.16225.1 |
$[9, 3, -\frac{1}{2}w^{3} + \frac{3}{2}w^{2} + \frac{7}{2}w - 9]$ |
$10$ |
9.2-a |
4.4.16225.1 |
$[9,3,-\frac{1}{3}w^{3} - \frac{2}{3}w^{2} + \frac{7}{3}w + 5]$ |
$2$ |
9.2-b |
4.4.16225.1 |
$[9,3,-\frac{1}{3}w^{3} - \frac{2}{3}w^{2} + \frac{7}{3}w + 5]$ |
$10$ |
11.1-a |
4.4.16225.1 |
$[11, 11, -\frac{1}{6}w^{3} + \frac{1}{6}w^{2} + \frac{1}{6}w]$ |
$3$ |
11.1-b |
4.4.16225.1 |
$[11, 11, -\frac{1}{6}w^{3} + \frac{1}{6}w^{2} + \frac{1}{6}w]$ |
$3$ |
11.1-c |
4.4.16225.1 |
$[11, 11, -\frac{1}{6}w^{3} + \frac{1}{6}w^{2} + \frac{1}{6}w]$ |
$3$ |
11.1-d |
4.4.16225.1 |
$[11, 11, -\frac{1}{6}w^{3} + \frac{1}{6}w^{2} + \frac{1}{6}w]$ |
$3$ |
16.1-a |
4.4.16225.1 |
$[16, 2, 2]$ |
$1$ |
16.1-b |
4.4.16225.1 |
$[16, 2, 2]$ |
$1$ |
16.1-c |
4.4.16225.1 |
$[16, 2, 2]$ |
$1$ |
16.1-d |
4.4.16225.1 |
$[16, 2, 2]$ |
$1$ |
16.1-e |
4.4.16225.1 |
$[16, 2, 2]$ |
$9$ |
16.1-f |
4.4.16225.1 |
$[16, 2, 2]$ |
$9$ |
16.2-a |
4.4.16225.1 |
$[16, 4, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + \frac{10}{3}w]$ |
$8$ |
16.2-b |
4.4.16225.1 |
$[16, 4, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + \frac{10}{3}w]$ |
$10$ |
16.3-a |
4.4.16225.1 |
$[16,4,-\frac{1}{6}w^{3} + \frac{1}{6}w^{2} + \frac{1}{6}w + 1]$ |
$8$ |
16.3-b |
4.4.16225.1 |
$[16,4,-\frac{1}{6}w^{3} + \frac{1}{6}w^{2} + \frac{1}{6}w + 1]$ |
$10$ |
19.1-a |
4.4.16225.1 |
$[19, 19, w + 1]$ |
$17$ |
19.1-b |
4.4.16225.1 |
$[19, 19, w + 1]$ |
$17$ |
19.2-a |
4.4.16225.1 |
$[19,19,\frac{1}{6}w^{3} - \frac{1}{6}w^{2} - \frac{13}{6}w + 2]$ |
$17$ |
19.2-b |
4.4.16225.1 |
$[19,19,\frac{1}{6}w^{3} - \frac{1}{6}w^{2} - \frac{13}{6}w + 2]$ |
$17$ |
25.1-a |
4.4.16225.1 |
$[25, 5, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + \frac{7}{3}w - 1]$ |
$1$ |
25.1-b |
4.4.16225.1 |
$[25, 5, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + \frac{7}{3}w - 1]$ |
$1$ |
25.1-c |
4.4.16225.1 |
$[25, 5, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + \frac{7}{3}w - 1]$ |
$2$ |
25.1-d |
4.4.16225.1 |
$[25, 5, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + \frac{7}{3}w - 1]$ |
$2$ |
25.1-e |
4.4.16225.1 |
$[25, 5, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + \frac{7}{3}w - 1]$ |
$4$ |
25.1-f |
4.4.16225.1 |
$[25, 5, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + \frac{7}{3}w - 1]$ |
$4$ |
25.1-g |
4.4.16225.1 |
$[25, 5, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + \frac{7}{3}w - 1]$ |
$4$ |
25.1-h |
4.4.16225.1 |
$[25, 5, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + \frac{7}{3}w - 1]$ |
$4$ |
25.1-i |
4.4.16225.1 |
$[25, 5, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + \frac{7}{3}w - 1]$ |
$4$ |
25.1-j |
4.4.16225.1 |
$[25, 5, -\frac{1}{3}w^{3} + \frac{1}{3}w^{2} + \frac{7}{3}w - 1]$ |
$24$ |
29.1-a |
4.4.16225.1 |
$[29, 29, -\frac{1}{6}w^{3} + \frac{1}{6}w^{2} + \frac{13}{6}w]$ |
$25$ |
29.1-b |
4.4.16225.1 |
$[29, 29, -\frac{1}{6}w^{3} + \frac{1}{6}w^{2} + \frac{13}{6}w]$ |
$25$ |
29.2-a |
4.4.16225.1 |
$[29,29,-w + 1]$ |
$25$ |
29.2-b |
4.4.16225.1 |
$[29,29,-w + 1]$ |
$25$ |
31.1-a |
4.4.16225.1 |
$[31, 31, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - \frac{10}{3}w + 3]$ |
$29$ |
31.1-b |
4.4.16225.1 |
$[31, 31, \frac{1}{3}w^{3} - \frac{1}{3}w^{2} - \frac{10}{3}w + 3]$ |
$29$ |
31.2-a |
4.4.16225.1 |
$[31,31,\frac{1}{6}w^{3} - \frac{1}{6}w^{2} - \frac{1}{6}w + 2]$ |
$29$ |
31.2-b |
4.4.16225.1 |
$[31,31,\frac{1}{6}w^{3} - \frac{1}{6}w^{2} - \frac{1}{6}w + 2]$ |
$29$ |
36.1-a |
4.4.16225.1 |
$[36, 6, -w]$ |
$11$ |
36.1-b |
4.4.16225.1 |
$[36, 6, -w]$ |
$11$ |
36.1-c |
4.4.16225.1 |
$[36, 6, -w]$ |
$15$ |
36.1-d |
4.4.16225.1 |
$[36, 6, -w]$ |
$15$ |
36.2-a |
4.4.16225.1 |
$[36,6,-w^{2} + w + 4]$ |
$2$ |