Learn more about

Refine search


Results (1-50 of 1612 matches)

Next
Label Base field Level Dimension
1.1-a \(\Q(\sqrt{2}, \sqrt{5})\) $[1, 1, 1]$ $1$
16.1-a \(\Q(\sqrt{2}, \sqrt{5})\) $[16, 2, 2]$ $1$
25.1-a \(\Q(\sqrt{2}, \sqrt{5})\) $[25, 5, w^{2} - 3]$ $2$
31.1-a \(\Q(\sqrt{2}, \sqrt{5})\) $[31, 31, \frac{1}{2}w^{3} + \frac{1}{2}w^{2} - 3w]$ $1$
31.2-a \(\Q(\sqrt{2}, \sqrt{5})\) $[31,31,-\frac{1}{2}w^{2} - w + 3]$ $1$
31.3-a \(\Q(\sqrt{2}, \sqrt{5})\) $[31,31,-\frac{1}{2}w^{2} + w + 3]$ $1$
31.4-a \(\Q(\sqrt{2}, \sqrt{5})\) $[31,31,-\frac{1}{2}w^{3} + \frac{1}{2}w^{2} + 3w]$ $1$
36.1-a \(\Q(\sqrt{2}, \sqrt{5})\) $[36, 6, -w^{3} + 5w + 2]$ $1$
36.1-b \(\Q(\sqrt{2}, \sqrt{5})\) $[36, 6, -w^{3} + 5w + 2]$ $1$
36.2-a \(\Q(\sqrt{2}, \sqrt{5})\) $[36,6,w^{3} - 5w + 2]$ $1$
36.2-b \(\Q(\sqrt{2}, \sqrt{5})\) $[36,6,w^{3} - 5w + 2]$ $1$
41.1-a \(\Q(\sqrt{2}, \sqrt{5})\) $[41, 41, \frac{1}{2}w^{3} - w^{2} - w + 3]$ $2$
41.2-a \(\Q(\sqrt{2}, \sqrt{5})\) $[41,41,w^{3} + w^{2} - 5w - 3]$ $2$
41.3-a \(\Q(\sqrt{2}, \sqrt{5})\) $[41,41,-w^{3} + w^{2} + 5w - 3]$ $2$
41.4-a \(\Q(\sqrt{2}, \sqrt{5})\) $[41,41,-\frac{1}{2}w^{3} - w^{2} + w + 3]$ $2$
49.1-a \(\Q(\sqrt{2}, \sqrt{5})\) $[49,7,-\frac{1}{2}w^{3} + 2w - 3]$ $3$
49.2-a \(\Q(\sqrt{2}, \sqrt{5})\) $[49, 7, \frac{1}{2}w^{3} - 2w - 3]$ $3$
64.1-a \(\Q(\sqrt{2}, \sqrt{5})\) $[64, 4, w^{3} - 4w]$ $1$
71.1-a \(\Q(\sqrt{2}, \sqrt{5})\) $[71, 71, \frac{1}{2}w^{3} + \frac{1}{2}w^{2} - 2w - 5]$ $1$
71.1-b \(\Q(\sqrt{2}, \sqrt{5})\) $[71, 71, \frac{1}{2}w^{3} + \frac{1}{2}w^{2} - 2w - 5]$ $1$
71.2-a \(\Q(\sqrt{2}, \sqrt{5})\) $[71,71,\frac{1}{2}w^{3} - \frac{1}{2}w^{2} - 2w - 2]$ $1$
71.2-b \(\Q(\sqrt{2}, \sqrt{5})\) $[71,71,\frac{1}{2}w^{3} - \frac{1}{2}w^{2} - 2w - 2]$ $1$
71.3-a \(\Q(\sqrt{2}, \sqrt{5})\) $[71,71,-\frac{1}{2}w^{3} - \frac{1}{2}w^{2} + 2w - 2]$ $1$
71.3-b \(\Q(\sqrt{2}, \sqrt{5})\) $[71,71,-\frac{1}{2}w^{3} - \frac{1}{2}w^{2} + 2w - 2]$ $1$
71.4-a \(\Q(\sqrt{2}, \sqrt{5})\) $[71,71,-\frac{1}{2}w^{3} + \frac{1}{2}w^{2} + 2w - 5]$ $1$
71.4-b \(\Q(\sqrt{2}, \sqrt{5})\) $[71,71,-\frac{1}{2}w^{3} + \frac{1}{2}w^{2} + 2w - 5]$ $1$
79.1-a \(\Q(\sqrt{2}, \sqrt{5})\) $[79, 79, \frac{1}{2}w^{3} + \frac{3}{2}w^{2} - 2w - 4]$ $3$
79.2-a \(\Q(\sqrt{2}, \sqrt{5})\) $[79,79,-\frac{1}{2}w^{3} - \frac{3}{2}w^{2} + 2w + 5]$ $3$
79.3-a \(\Q(\sqrt{2}, \sqrt{5})\) $[79,79,\frac{1}{2}w^{3} - \frac{3}{2}w^{2} - 2w + 5]$ $3$
79.4-a \(\Q(\sqrt{2}, \sqrt{5})\) $[79,79,-\frac{1}{2}w^{3} + \frac{3}{2}w^{2} + 2w - 4]$ $3$
81.1-a \(\Q(\sqrt{2}, \sqrt{5})\) $[81, 3, 3]$ $1$
81.1-b \(\Q(\sqrt{2}, \sqrt{5})\) $[81, 3, 3]$ $1$
81.1-c \(\Q(\sqrt{2}, \sqrt{5})\) $[81, 3, 3]$ $3$
81.2-a \(\Q(\sqrt{2}, \sqrt{5})\) $[81, 9, -\frac{1}{2}w^{3} + 4w - 1]$ $1$
81.2-b \(\Q(\sqrt{2}, \sqrt{5})\) $[81, 9, -\frac{1}{2}w^{3} + 4w - 1]$ $1$
81.2-c \(\Q(\sqrt{2}, \sqrt{5})\) $[81, 9, -\frac{1}{2}w^{3} + 4w - 1]$ $1$
81.3-a \(\Q(\sqrt{2}, \sqrt{5})\) $[81,9,\frac{1}{2}w^{3} - 4w - 1]$ $1$
81.3-b \(\Q(\sqrt{2}, \sqrt{5})\) $[81,9,\frac{1}{2}w^{3} - 4w - 1]$ $1$
81.3-c \(\Q(\sqrt{2}, \sqrt{5})\) $[81,9,\frac{1}{2}w^{3} - 4w - 1]$ $1$
89.1-a \(\Q(\sqrt{2}, \sqrt{5})\) $[89, 89, w^{2} + w - 5]$ $1$
89.1-b \(\Q(\sqrt{2}, \sqrt{5})\) $[89, 89, w^{2} + w - 5]$ $1$
89.1-c \(\Q(\sqrt{2}, \sqrt{5})\) $[89, 89, w^{2} + w - 5]$ $2$
89.2-a \(\Q(\sqrt{2}, \sqrt{5})\) $[89,89,-\frac{1}{2}w^{3} - w^{2} + 3w + 1]$ $1$
89.2-b \(\Q(\sqrt{2}, \sqrt{5})\) $[89,89,-\frac{1}{2}w^{3} - w^{2} + 3w + 1]$ $1$
89.2-c \(\Q(\sqrt{2}, \sqrt{5})\) $[89,89,-\frac{1}{2}w^{3} - w^{2} + 3w + 1]$ $2$
89.3-a \(\Q(\sqrt{2}, \sqrt{5})\) $[89,89,\frac{1}{2}w^{3} - w^{2} - 3w + 1]$ $1$
89.3-b \(\Q(\sqrt{2}, \sqrt{5})\) $[89,89,\frac{1}{2}w^{3} - w^{2} - 3w + 1]$ $1$
89.3-c \(\Q(\sqrt{2}, \sqrt{5})\) $[89,89,\frac{1}{2}w^{3} - w^{2} - 3w + 1]$ $2$
89.4-a \(\Q(\sqrt{2}, \sqrt{5})\) $[89,89,w^{2} - w - 5]$ $1$
89.4-b \(\Q(\sqrt{2}, \sqrt{5})\) $[89,89,w^{2} - w - 5]$ $1$
Next