1.1-a |
4.4.13025.1 |
$[1, 1, 1]$ |
$5$ |
4.1-a |
4.4.13025.1 |
$[4, 2, \frac{1}{2}w^{3} - 2w^{2} - 2w + \frac{15}{2}]$ |
$2$ |
4.2-a |
4.4.13025.1 |
$[4,2,w^{2} - w - 8]$ |
$2$ |
5.1-a |
4.4.13025.1 |
$[5, 5, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} + \frac{1}{2}w - \frac{9}{4}]$ |
$1$ |
5.1-b |
4.4.13025.1 |
$[5, 5, -\frac{1}{4}w^{3} + \frac{1}{2}w^{2} + \frac{1}{2}w - \frac{9}{4}]$ |
$2$ |
5.2-a |
4.4.13025.1 |
$[5,5,-\frac{1}{2}w^{3} + w^{2} + 4w - \frac{9}{2}]$ |
$1$ |
5.2-b |
4.4.13025.1 |
$[5,5,-\frac{1}{2}w^{3} + w^{2} + 4w - \frac{9}{2}]$ |
$2$ |
16.1-a |
4.4.13025.1 |
$[16, 2, 2]$ |
$1$ |
16.1-b |
4.4.13025.1 |
$[16, 2, 2]$ |
$1$ |
16.1-c |
4.4.13025.1 |
$[16, 2, 2]$ |
$1$ |
16.1-d |
4.4.13025.1 |
$[16, 2, 2]$ |
$1$ |
16.1-e |
4.4.13025.1 |
$[16, 2, 2]$ |
$1$ |
16.1-f |
4.4.13025.1 |
$[16, 2, 2]$ |
$1$ |
16.1-g |
4.4.13025.1 |
$[16, 2, 2]$ |
$1$ |
16.1-h |
4.4.13025.1 |
$[16, 2, 2]$ |
$2$ |
16.1-i |
4.4.13025.1 |
$[16, 2, 2]$ |
$4$ |
16.1-j |
4.4.13025.1 |
$[16, 2, 2]$ |
$5$ |
16.2-a |
4.4.13025.1 |
$[16, 4, \frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{5}{2}w + \frac{13}{4}]$ |
$2$ |
16.2-b |
4.4.13025.1 |
$[16, 4, \frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{5}{2}w + \frac{13}{4}]$ |
$4$ |
16.2-c |
4.4.13025.1 |
$[16, 4, \frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{5}{2}w + \frac{13}{4}]$ |
$8$ |
16.3-a |
4.4.13025.1 |
$[16,4,w + 1]$ |
$2$ |
16.3-b |
4.4.13025.1 |
$[16,4,w + 1]$ |
$4$ |
16.3-c |
4.4.13025.1 |
$[16,4,w + 1]$ |
$8$ |
19.1-a |
4.4.13025.1 |
$[19, 19, \frac{1}{4}w^{3} - \frac{3}{2}w^{2} - \frac{1}{2}w + \frac{21}{4}]$ |
$1$ |
19.1-b |
4.4.13025.1 |
$[19, 19, \frac{1}{4}w^{3} - \frac{3}{2}w^{2} - \frac{1}{2}w + \frac{21}{4}]$ |
$3$ |
19.1-c |
4.4.13025.1 |
$[19, 19, \frac{1}{4}w^{3} - \frac{3}{2}w^{2} - \frac{1}{2}w + \frac{21}{4}]$ |
$8$ |
19.1-d |
4.4.13025.1 |
$[19, 19, \frac{1}{4}w^{3} - \frac{3}{2}w^{2} - \frac{1}{2}w + \frac{21}{4}]$ |
$11$ |
19.2-a |
4.4.13025.1 |
$[19,19,-\frac{1}{4}w^{3} + \frac{3}{2}w^{2} + \frac{1}{2}w - \frac{41}{4}]$ |
$1$ |
19.2-b |
4.4.13025.1 |
$[19,19,-\frac{1}{4}w^{3} + \frac{3}{2}w^{2} + \frac{1}{2}w - \frac{41}{4}]$ |
$3$ |
19.2-c |
4.4.13025.1 |
$[19,19,-\frac{1}{4}w^{3} + \frac{3}{2}w^{2} + \frac{1}{2}w - \frac{41}{4}]$ |
$8$ |
19.2-d |
4.4.13025.1 |
$[19,19,-\frac{1}{4}w^{3} + \frac{3}{2}w^{2} + \frac{1}{2}w - \frac{41}{4}]$ |
$11$ |
20.1-a |
4.4.13025.1 |
$[20, 10, \frac{1}{2}w^{3} - w^{2} - 4w + \frac{11}{2}]$ |
$3$ |
20.1-b |
4.4.13025.1 |
$[20, 10, \frac{1}{2}w^{3} - w^{2} - 4w + \frac{11}{2}]$ |
$3$ |
20.1-c |
4.4.13025.1 |
$[20, 10, \frac{1}{2}w^{3} - w^{2} - 4w + \frac{11}{2}]$ |
$3$ |
20.1-d |
4.4.13025.1 |
$[20, 10, \frac{1}{2}w^{3} - w^{2} - 4w + \frac{11}{2}]$ |
$4$ |
20.1-e |
4.4.13025.1 |
$[20, 10, \frac{1}{2}w^{3} - w^{2} - 4w + \frac{11}{2}]$ |
$6$ |
20.2-a |
4.4.13025.1 |
$[20, 10, \frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{5}{2}w + \frac{5}{4}]$ |
$1$ |
20.2-b |
4.4.13025.1 |
$[20, 10, \frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{5}{2}w + \frac{5}{4}]$ |
$1$ |
20.2-c |
4.4.13025.1 |
$[20, 10, \frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{5}{2}w + \frac{5}{4}]$ |
$1$ |
20.2-d |
4.4.13025.1 |
$[20, 10, \frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{5}{2}w + \frac{5}{4}]$ |
$1$ |
20.2-e |
4.4.13025.1 |
$[20, 10, \frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{5}{2}w + \frac{5}{4}]$ |
$2$ |
20.2-f |
4.4.13025.1 |
$[20, 10, \frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{5}{2}w + \frac{5}{4}]$ |
$3$ |
20.2-g |
4.4.13025.1 |
$[20, 10, \frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{5}{2}w + \frac{5}{4}]$ |
$3$ |
20.2-h |
4.4.13025.1 |
$[20, 10, \frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{5}{2}w + \frac{5}{4}]$ |
$7$ |
20.3-a |
4.4.13025.1 |
$[20,10,\frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{1}{2}w + \frac{13}{4}]$ |
$3$ |
20.3-b |
4.4.13025.1 |
$[20,10,\frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{1}{2}w + \frac{13}{4}]$ |
$3$ |
20.3-c |
4.4.13025.1 |
$[20,10,\frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{1}{2}w + \frac{13}{4}]$ |
$3$ |
20.3-d |
4.4.13025.1 |
$[20,10,\frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{1}{2}w + \frac{13}{4}]$ |
$4$ |
20.3-e |
4.4.13025.1 |
$[20,10,\frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{1}{2}w + \frac{13}{4}]$ |
$6$ |
20.4-a |
4.4.13025.1 |
$[20,10,w - 1]$ |
$1$ |