1.1-a |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[1, 1, 1]$ |
$1$ |
1.1-b |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[1, 1, 1]$ |
$1$ |
1.1-c |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[1, 1, 1]$ |
$1$ |
1.1-d |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[1, 1, 1]$ |
$2$ |
4.1-a |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[4, 2, \frac{1}{4}w^{3} - \frac{1}{2}w^{2} - \frac{11}{4}w + 5]$ |
$2$ |
4.2-a |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[4,2,-\frac{1}{8}w^{3} + \frac{1}{2}w^{2} + \frac{5}{8}w - \frac{3}{2}]$ |
$2$ |
9.1-a |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[9, 3, -\frac{1}{8}w^{3} + \frac{17}{8}w + \frac{3}{2}]$ |
$2$ |
9.1-b |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[9, 3, -\frac{1}{8}w^{3} + \frac{17}{8}w + \frac{3}{2}]$ |
$2$ |
9.1-c |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[9, 3, -\frac{1}{8}w^{3} + \frac{17}{8}w + \frac{3}{2}]$ |
$2$ |
9.1-d |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[9, 3, -\frac{1}{8}w^{3} + \frac{17}{8}w + \frac{3}{2}]$ |
$4$ |
16.1-a |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[16, 2, 2]$ |
$1$ |
16.1-b |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[16, 2, 2]$ |
$1$ |
16.1-c |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[16, 2, 2]$ |
$2$ |
16.1-d |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[16, 2, 2]$ |
$2$ |
16.1-e |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[16, 2, 2]$ |
$2$ |
16.1-f |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[16, 2, 2]$ |
$2$ |
16.1-g |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[16, 2, 2]$ |
$4$ |
16.2-a |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[16, 4, -w]$ |
$1$ |
16.2-b |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[16, 4, -w]$ |
$2$ |
16.2-c |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[16, 4, -w]$ |
$2$ |
16.2-d |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[16, 4, -w]$ |
$4$ |
16.2-e |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[16, 4, -w]$ |
$4$ |
16.3-a |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[16,4,\frac{1}{4}w^{3} - \frac{13}{4}w]$ |
$1$ |
16.3-b |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[16,4,\frac{1}{4}w^{3} - \frac{13}{4}w]$ |
$2$ |
16.3-c |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[16,4,\frac{1}{4}w^{3} - \frac{13}{4}w]$ |
$2$ |
16.3-d |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[16,4,\frac{1}{4}w^{3} - \frac{13}{4}w]$ |
$4$ |
16.3-e |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[16,4,\frac{1}{4}w^{3} - \frac{13}{4}w]$ |
$4$ |
20.1-a |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[20, 10, -w - 2]$ |
$1$ |
20.1-b |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[20, 10, -w - 2]$ |
$1$ |
20.1-c |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[20, 10, -w - 2]$ |
$1$ |
20.1-d |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[20, 10, -w - 2]$ |
$1$ |
20.1-e |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[20, 10, -w - 2]$ |
$2$ |
20.1-f |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[20, 10, -w - 2]$ |
$2$ |
20.1-g |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[20, 10, -w - 2]$ |
$3$ |
20.1-h |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[20, 10, -w - 2]$ |
$3$ |
20.2-a |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[20,10,-\frac{1}{4}w^{3} + \frac{13}{4}w - 2]$ |
$1$ |
20.2-b |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[20,10,-\frac{1}{4}w^{3} + \frac{13}{4}w - 2]$ |
$1$ |
20.2-c |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[20,10,-\frac{1}{4}w^{3} + \frac{13}{4}w - 2]$ |
$1$ |
20.2-d |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[20,10,-\frac{1}{4}w^{3} + \frac{13}{4}w - 2]$ |
$1$ |
20.2-e |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[20,10,-\frac{1}{4}w^{3} + \frac{13}{4}w - 2]$ |
$2$ |
20.2-f |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[20,10,-\frac{1}{4}w^{3} + \frac{13}{4}w - 2]$ |
$2$ |
20.2-g |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[20,10,-\frac{1}{4}w^{3} + \frac{13}{4}w - 2]$ |
$3$ |
20.2-h |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[20,10,-\frac{1}{4}w^{3} + \frac{13}{4}w - 2]$ |
$3$ |
20.3-a |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[20,10,\frac{1}{4}w^{3} - \frac{13}{4}w - 2]$ |
$1$ |
20.3-b |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[20,10,\frac{1}{4}w^{3} - \frac{13}{4}w - 2]$ |
$1$ |
20.3-c |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[20,10,\frac{1}{4}w^{3} - \frac{13}{4}w - 2]$ |
$1$ |
20.3-d |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[20,10,\frac{1}{4}w^{3} - \frac{13}{4}w - 2]$ |
$1$ |
20.3-e |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[20,10,\frac{1}{4}w^{3} - \frac{13}{4}w - 2]$ |
$2$ |
20.3-f |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[20,10,\frac{1}{4}w^{3} - \frac{13}{4}w - 2]$ |
$2$ |
20.3-g |
\(\Q(\sqrt{5}, \sqrt{21})\) |
$[20,10,\frac{1}{4}w^{3} - \frac{13}{4}w - 2]$ |
$3$ |