1.1-a |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[1, 1, 1]$ |
$1$ |
1.1-b |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[1, 1, 1]$ |
$1$ |
1.1-c |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[1, 1, 1]$ |
$2$ |
4.1-a |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[4, 2, -\frac{2}{5}w^{3} + \frac{3}{5}w^{2} + \frac{17}{5}w - \frac{9}{5}]$ |
$1$ |
4.1-b |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[4, 2, -\frac{2}{5}w^{3} + \frac{3}{5}w^{2} + \frac{17}{5}w - \frac{9}{5}]$ |
$2$ |
9.1-a |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[9, 3, -\frac{2}{5}w^{3} + \frac{3}{5}w^{2} + \frac{22}{5}w - \frac{9}{5}]$ |
$2$ |
9.1-b |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[9, 3, -\frac{2}{5}w^{3} + \frac{3}{5}w^{2} + \frac{22}{5}w - \frac{9}{5}]$ |
$6$ |
9.2-a |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[9,3,\frac{2}{5}w^{3} - \frac{3}{5}w^{2} - \frac{22}{5}w + \frac{14}{5}]$ |
$2$ |
9.2-b |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[9,3,\frac{2}{5}w^{3} - \frac{3}{5}w^{2} - \frac{22}{5}w + \frac{14}{5}]$ |
$6$ |
16.1-a |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[16, 2, 2]$ |
$2$ |
16.1-b |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[16, 2, 2]$ |
$2$ |
16.1-c |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[16, 2, 2]$ |
$4$ |
16.1-d |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[16, 2, 2]$ |
$4$ |
17.1-a |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[17, 17, w + 1]$ |
$1$ |
17.1-b |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[17, 17, w + 1]$ |
$1$ |
17.1-c |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[17, 17, w + 1]$ |
$1$ |
17.1-d |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[17, 17, w + 1]$ |
$6$ |
17.1-e |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[17, 17, w + 1]$ |
$6$ |
17.2-a |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[17,17,-\frac{4}{5}w^{3} + \frac{6}{5}w^{2} + \frac{39}{5}w - \frac{13}{5}]$ |
$1$ |
17.2-b |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[17,17,-\frac{4}{5}w^{3} + \frac{6}{5}w^{2} + \frac{39}{5}w - \frac{13}{5}]$ |
$1$ |
17.2-c |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[17,17,-\frac{4}{5}w^{3} + \frac{6}{5}w^{2} + \frac{39}{5}w - \frac{13}{5}]$ |
$1$ |
17.2-d |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[17,17,-\frac{4}{5}w^{3} + \frac{6}{5}w^{2} + \frac{39}{5}w - \frac{13}{5}]$ |
$6$ |
17.2-e |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[17,17,-\frac{4}{5}w^{3} + \frac{6}{5}w^{2} + \frac{39}{5}w - \frac{13}{5}]$ |
$6$ |
17.3-a |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[17,17,\frac{4}{5}w^{3} - \frac{6}{5}w^{2} - \frac{39}{5}w + \frac{28}{5}]$ |
$1$ |
17.3-b |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[17,17,\frac{4}{5}w^{3} - \frac{6}{5}w^{2} - \frac{39}{5}w + \frac{28}{5}]$ |
$1$ |
17.3-c |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[17,17,\frac{4}{5}w^{3} - \frac{6}{5}w^{2} - \frac{39}{5}w + \frac{28}{5}]$ |
$1$ |
17.3-d |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[17,17,\frac{4}{5}w^{3} - \frac{6}{5}w^{2} - \frac{39}{5}w + \frac{28}{5}]$ |
$6$ |
17.3-e |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[17,17,\frac{4}{5}w^{3} - \frac{6}{5}w^{2} - \frac{39}{5}w + \frac{28}{5}]$ |
$6$ |
17.4-a |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[17,17,-w + 2]$ |
$1$ |
17.4-b |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[17,17,-w + 2]$ |
$1$ |
17.4-c |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[17,17,-w + 2]$ |
$1$ |
17.4-d |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[17,17,-w + 2]$ |
$6$ |
17.4-e |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[17,17,-w + 2]$ |
$6$ |
23.1-a |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[23, 23, -\frac{1}{5}w^{3} + \frac{4}{5}w^{2} + \frac{6}{5}w - \frac{22}{5}]$ |
$1$ |
23.1-b |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[23, 23, -\frac{1}{5}w^{3} + \frac{4}{5}w^{2} + \frac{6}{5}w - \frac{22}{5}]$ |
$1$ |
23.1-c |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[23, 23, -\frac{1}{5}w^{3} + \frac{4}{5}w^{2} + \frac{6}{5}w - \frac{22}{5}]$ |
$1$ |
23.1-d |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[23, 23, -\frac{1}{5}w^{3} + \frac{4}{5}w^{2} + \frac{6}{5}w - \frac{22}{5}]$ |
$2$ |
23.1-e |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[23, 23, -\frac{1}{5}w^{3} + \frac{4}{5}w^{2} + \frac{6}{5}w - \frac{22}{5}]$ |
$2$ |
23.1-f |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[23, 23, -\frac{1}{5}w^{3} + \frac{4}{5}w^{2} + \frac{6}{5}w - \frac{22}{5}]$ |
$9$ |
23.2-a |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[23,23,-\frac{1}{5}w^{3} - \frac{1}{5}w^{2} + \frac{11}{5}w + \frac{3}{5}]$ |
$1$ |
23.2-b |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[23,23,-\frac{1}{5}w^{3} - \frac{1}{5}w^{2} + \frac{11}{5}w + \frac{3}{5}]$ |
$1$ |
23.2-c |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[23,23,-\frac{1}{5}w^{3} - \frac{1}{5}w^{2} + \frac{11}{5}w + \frac{3}{5}]$ |
$1$ |
23.2-d |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[23,23,-\frac{1}{5}w^{3} - \frac{1}{5}w^{2} + \frac{11}{5}w + \frac{3}{5}]$ |
$2$ |
23.2-e |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[23,23,-\frac{1}{5}w^{3} - \frac{1}{5}w^{2} + \frac{11}{5}w + \frac{3}{5}]$ |
$2$ |
23.2-f |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[23,23,-\frac{1}{5}w^{3} - \frac{1}{5}w^{2} + \frac{11}{5}w + \frac{3}{5}]$ |
$9$ |
23.3-a |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[23,23,\frac{1}{5}w^{3} - \frac{4}{5}w^{2} - \frac{6}{5}w + \frac{12}{5}]$ |
$1$ |
23.3-b |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[23,23,\frac{1}{5}w^{3} - \frac{4}{5}w^{2} - \frac{6}{5}w + \frac{12}{5}]$ |
$1$ |
23.3-c |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[23,23,\frac{1}{5}w^{3} - \frac{4}{5}w^{2} - \frac{6}{5}w + \frac{12}{5}]$ |
$1$ |
23.3-d |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[23,23,\frac{1}{5}w^{3} - \frac{4}{5}w^{2} - \frac{6}{5}w + \frac{12}{5}]$ |
$2$ |
23.3-e |
\(\Q(\sqrt{2}, \sqrt{13})\) |
$[23,23,\frac{1}{5}w^{3} - \frac{4}{5}w^{2} - \frac{6}{5}w + \frac{12}{5}]$ |
$2$ |