| Label |
Base field |
Field degree |
Field discriminant |
Level |
Level norm |
Weight |
Dimension |
CM |
Base change |
| 27.1-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[27, 3, 3]$ |
$27$ |
$[2, 2, 2]$ |
$1$ |
|
✓ |
| 41.1-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[41, 41, w^2 - w - 5]$ |
$41$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 41.2-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[41,41,-w^2 - 2]$ |
$41$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 41.3-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[41,41,w - 4]$ |
$41$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 49.1-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[49, 7, -w^2 + 3 w + 3]$ |
$49$ |
$[2, 2, 2]$ |
$1$ |
✓ |
✓ |
| 56.1-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[56, 14, 4 w^2 - 2 w - 6]$ |
$56$ |
$[2, 2, 2]$ |
$1$ |
|
✓ |
| 64.1-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[64, 4, 4]$ |
$64$ |
$[2, 2, 2]$ |
$1$ |
|
✓ |
| 71.1-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[71, 71, 4 w^2 - 3 w - 5]$ |
$71$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 71.2-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[71,71,-3 w^2 - w + 6]$ |
$71$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 71.3-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[71,71,-w^2 + 4 w + 1]$ |
$71$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 83.1-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[83, 83, w^2 + w - 7]$ |
$83$ |
$[2, 2, 2]$ |
$2$ |
|
|
| 83.2-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[83,83,w^2 - 2 w - 6]$ |
$83$ |
$[2, 2, 2]$ |
$2$ |
|
|
| 83.3-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[83,83,-2 w^2 + w - 2]$ |
$83$ |
$[2, 2, 2]$ |
$2$ |
|
|
| 91.1-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[91, 91, w^2 - w - 6]$ |
$91$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 91.2-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[91,91,-w^2 - 3]$ |
$91$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 91.3-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[91,91,w - 5]$ |
$91$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 97.1-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[97, 97, 3 w^2 + w - 7]$ |
$97$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 97.2-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[97,97,-4 w^2 + 3 w + 4]$ |
$97$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 97.3-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[97,97,w^2 - 4 w - 2]$ |
$97$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 104.1-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[104, 26, -2 w^2 - 2 w + 6]$ |
$104$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 104.1-b |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[104, 26, -2 w^2 - 2 w + 6]$ |
$104$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 104.2-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[104,26,-2 w^2 + 4 w + 4]$ |
$104$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 104.2-b |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[104,26,-2 w^2 + 4 w + 4]$ |
$104$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 104.3-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[104,26,4 w^2 - 2 w - 4]$ |
$104$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 104.3-b |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[104,26,4 w^2 - 2 w - 4]$ |
$104$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 113.1-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[113, 113, 3 w^2 + w - 8]$ |
$113$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 113.2-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[113,113,-4 w^2 + 3 w + 3]$ |
$113$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 113.3-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[113,113,w^2 - 4 w - 3]$ |
$113$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 125.1-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[125, 5, -5]$ |
$125$ |
$[2, 2, 2]$ |
$2$ |
|
✓ |
| 127.1-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[127, 127, 2 w^2 - 9]$ |
$127$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 127.2-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[127,127,-2 w^2 + 2 w - 3]$ |
$127$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 127.3-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[127,127,-2 w - 5]$ |
$127$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 139.1-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[139, 139, 5 w^2 - 4 w - 6]$ |
$139$ |
$[2, 2, 2]$ |
$2$ |
|
|
| 139.2-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[139,139,-4 w^2 - w + 8]$ |
$139$ |
$[2, 2, 2]$ |
$2$ |
|
|
| 139.3-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[139,139,-w^2 + 5 w + 1]$ |
$139$ |
$[2, 2, 2]$ |
$2$ |
|
|
| 167.1-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[167, 167, w^2 + w - 8]$ |
$167$ |
$[2, 2, 2]$ |
$3$ |
|
|
| 167.2-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[167,167,w^2 - 2 w - 7]$ |
$167$ |
$[2, 2, 2]$ |
$3$ |
|
|
| 167.3-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[167,167,-2 w^2 + w - 3]$ |
$167$ |
$[2, 2, 2]$ |
$3$ |
|
|
| 169.1-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[169, 13, -3 w^2 - 2 w + 7]$ |
$169$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 169.2-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[169,13,5 w^2 - 3 w - 6]$ |
$169$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 169.3-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[169,13,-2 w^2 + 5 w + 3]$ |
$169$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 169.4-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[169, 169, -w^2 + w + 7]$ |
$169$ |
$[2, 2, 2]$ |
$2$ |
|
|
| 169.5-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[169,169,w^2 + 4]$ |
$169$ |
$[2, 2, 2]$ |
$2$ |
|
|
| 169.6-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[169,169,-w + 6]$ |
$169$ |
$[2, 2, 2]$ |
$2$ |
|
|
| 181.1-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[181, 181, 4 w^2 + w - 9]$ |
$181$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 181.1-b |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[181, 181, 4 w^2 + w - 9]$ |
$181$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 181.2-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[181,181,-5 w^2 + 4 w + 5]$ |
$181$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 181.2-b |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[181,181,-5 w^2 + 4 w + 5]$ |
$181$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 181.3-a |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[181,181,w^2 - 5 w - 2]$ |
$181$ |
$[2, 2, 2]$ |
$1$ |
|
|
| 181.3-b |
\(\Q(\zeta_{7})^+\) |
$3$ |
$49$ |
$[181,181,w^2 - 5 w - 2]$ |
$181$ |
$[2, 2, 2]$ |
$1$ |
|
|