Properties

Label 6.6.966125.1-31.2-a
Base field 6.6.966125.1
Weight $[2, 2, 2, 2, 2, 2]$
Level norm $31$
Level $[31, 31, -w^{2} + 2]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 6.6.966125.1

Generator \(w\), with minimal polynomial \(x^{6} - x^{5} - 6x^{4} + 4x^{3} + 8x^{2} - 1\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2, 2, 2]$
Level: $[31, 31, -w^{2} + 2]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $16$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
5 $[5, 5, w - 1]$ $\phantom{-}3$
11 $[11, 11, w^{3} - 3w]$ $\phantom{-}6$
19 $[19, 19, -w^{5} + w^{4} + 5w^{3} - 4w^{2} - 5w]$ $\phantom{-}1$
25 $[25, 5, w^{5} - 2w^{4} - 6w^{3} + 8w^{2} + 8w]$ $\phantom{-}2$
29 $[29, 29, -w^{4} + 4w^{2} + 1]$ $\phantom{-}4$
31 $[31, 31, w^{5} - 2w^{4} - 5w^{3} + 9w^{2} + 3w - 4]$ $-4$
31 $[31, 31, -w^{2} + 2]$ $-1$
59 $[59, 59, -w^{5} + w^{4} + 5w^{3} - 3w^{2} - 4w - 2]$ $\phantom{-}6$
59 $[59, 59, w^{4} - w^{3} - 5w^{2} + 3w + 4]$ $\phantom{-}15$
59 $[59, 59, -w^{4} - w^{3} + 4w^{2} + 5w]$ $-8$
61 $[61, 61, w^{5} - w^{4} - 4w^{3} + 5w^{2} - 4]$ $-10$
64 $[64, 2, 2]$ $\phantom{-}7$
71 $[71, 71, w^{5} - w^{4} - 6w^{3} + 4w^{2} + 6w]$ $-4$
71 $[71, 71, -w^{5} + 2w^{4} + 4w^{3} - 9w^{2} + w + 4]$ $\phantom{-}0$
71 $[71, 71, 2w^{5} - 3w^{4} - 9w^{3} + 13w^{2} + 4w - 4]$ $\phantom{-}8$
71 $[71, 71, w^{3} - 5w]$ $-9$
79 $[79, 79, w^{5} - w^{4} - 4w^{3} + 4w^{2} + w - 2]$ $\phantom{-}7$
89 $[89, 89, w^{3} - w^{2} - 4w + 1]$ $\phantom{-}12$
101 $[101, 101, -2w^{5} + 3w^{4} + 11w^{3} - 13w^{2} - 12w + 2]$ $\phantom{-}17$
101 $[101, 101, 2w^{5} - 2w^{4} - 13w^{3} + 7w^{2} + 20w + 4]$ $-7$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$31$ $[31, 31, -w^{2} + 2]$ $1$