# Properties

 Label 6.6.966125.1-25.1-c Base field 6.6.966125.1 Weight $[2, 2, 2, 2, 2, 2]$ Level norm $25$ Level $[25, 5, -w^{4} - w^{3} + 4w^{2} + 4w - 1]$ Dimension $2$ CM no Base change no

# Related objects

• L-function not available

## Base field 6.6.966125.1

Generator $$w$$, with minimal polynomial $$x^{6} - x^{5} - 6x^{4} + 4x^{3} + 8x^{2} - 1$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2, 2, 2, 2]$ Level: $[25, 5, -w^{4} - w^{3} + 4w^{2} + 4w - 1]$ Dimension: $2$ CM: no Base change: no Newspace dimension: $10$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{2} - 24$$
Norm Prime Eigenvalue
5 $[5, 5, w - 1]$ $\phantom{-}0$
11 $[11, 11, w^{3} - 3w]$ $\phantom{-}e$
19 $[19, 19, -w^{5} + w^{4} + 5w^{3} - 4w^{2} - 5w]$ $\phantom{-}0$
25 $[25, 5, w^{5} - 2w^{4} - 6w^{3} + 8w^{2} + 8w]$ $\phantom{-}\frac{1}{2}e$
29 $[29, 29, -w^{4} + 4w^{2} + 1]$ $\phantom{-}0$
31 $[31, 31, w^{5} - 2w^{4} - 5w^{3} + 9w^{2} + 3w - 4]$ $\phantom{-}e$
31 $[31, 31, -w^{2} + 2]$ $\phantom{-}e$
59 $[59, 59, -w^{5} + w^{4} + 5w^{3} - 3w^{2} - 4w - 2]$ $\phantom{-}0$
59 $[59, 59, w^{4} - w^{3} - 5w^{2} + 3w + 4]$ $\phantom{-}0$
59 $[59, 59, -w^{4} - w^{3} + 4w^{2} + 5w]$ $\phantom{-}0$
61 $[61, 61, w^{5} - w^{4} - 4w^{3} + 5w^{2} - 4]$ $-\frac{3}{2}e$
64 $[64, 2, 2]$ $-5$
71 $[71, 71, w^{5} - w^{4} - 6w^{3} + 4w^{2} + 6w]$ $\phantom{-}12$
71 $[71, 71, -w^{5} + 2w^{4} + 4w^{3} - 9w^{2} + w + 4]$ $\phantom{-}e$
71 $[71, 71, 2w^{5} - 3w^{4} - 9w^{3} + 13w^{2} + 4w - 4]$ $\phantom{-}e$
71 $[71, 71, w^{3} - 5w]$ $\phantom{-}12$
79 $[79, 79, w^{5} - w^{4} - 4w^{3} + 4w^{2} + w - 2]$ $\phantom{-}0$
89 $[89, 89, w^{3} - w^{2} - 4w + 1]$ $\phantom{-}0$
101 $[101, 101, -2w^{5} + 3w^{4} + 11w^{3} - 13w^{2} - 12w + 2]$ $\phantom{-}\frac{7}{2}e$
101 $[101, 101, 2w^{5} - 2w^{4} - 13w^{3} + 7w^{2} + 20w + 4]$ $\phantom{-}12$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$5$ $[5, 5, w - 1]$ $1$