# Properties

 Base field 6.6.485125.1 Weight [2, 2, 2, 2, 2, 2] Level norm 79 Level $[79, 79, -w^{4} - w^{3} + 5w^{2} + 4w - 3]$ Label 6.6.485125.1-79.2-b Dimension 1 CM no Base change no

# Related objects

## Base field 6.6.485125.1

Generator $$w$$, with minimal polynomial $$x^{6} - 2x^{5} - 4x^{4} + 8x^{3} + 2x^{2} - 5x + 1$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight [2, 2, 2, 2, 2, 2] Level $[79, 79, -w^{4} - w^{3} + 5w^{2} + 4w - 3]$ Label 6.6.485125.1-79.2-b Dimension 1 Is CM no Is base change no Parent newspace dimension 13

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
9 $[9, 3, -w^{2} + 2]$ $-6$
19 $[19, 19, -w^{3} + 4w]$ $\phantom{-}0$
19 $[19, 19, w^{3} - 3w - 1]$ $\phantom{-}8$
29 $[29, 29, w^{5} - w^{4} - 6w^{3} + 4w^{2} + 8w - 3]$ $-10$
29 $[29, 29, w^{4} - w^{3} - 4w^{2} + 2w + 2]$ $-6$
31 $[31, 31, -w^{4} + 4w^{2} + w - 3]$ $\phantom{-}8$
41 $[41, 41, 2w^{5} - 2w^{4} - 10w^{3} + 7w^{2} + 11w - 4]$ $-2$
49 $[49, 7, -2w^{5} + 3w^{4} + 10w^{3} - 12w^{2} - 11w + 6]$ $\phantom{-}10$
59 $[59, 59, w^{5} - 2w^{4} - 5w^{3} + 8w^{2} + 7w - 5]$ $-8$
59 $[59, 59, w^{5} - w^{4} - 4w^{3} + 3w^{2} + 3w - 3]$ $\phantom{-}12$
59 $[59, 59, 2w^{5} - 3w^{4} - 9w^{3} + 11w^{2} + 9w - 4]$ $\phantom{-}12$
61 $[61, 61, -w^{5} + w^{4} + 5w^{3} - 3w^{2} - 7w + 1]$ $\phantom{-}2$
64 $[64, 2, -2]$ $\phantom{-}13$
71 $[71, 71, -2w^{5} + 2w^{4} + 10w^{3} - 8w^{2} - 11w + 6]$ $\phantom{-}12$
79 $[79, 79, -3w^{5} + 4w^{4} + 13w^{3} - 14w^{2} - 9w + 5]$ $-8$
79 $[79, 79, -w^{4} - w^{3} + 5w^{2} + 4w - 3]$ $-1$
79 $[79, 79, -2w^{5} + 2w^{4} + 9w^{3} - 7w^{2} - 8w + 4]$ $\phantom{-}0$
81 $[81, 3, 3w^{5} - 5w^{4} - 14w^{3} + 19w^{2} + 13w - 8]$ $\phantom{-}2$
89 $[89, 89, 2w^{5} - 2w^{4} - 9w^{3} + 6w^{2} + 8w - 1]$ $-6$
101 $[101, 101, -w^{4} - w^{3} + 5w^{2} + 3w - 3]$ $-2$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
79 $[79, 79, -w^{4} - w^{3} + 5w^{2} + 4w - 3]$ $1$