Base field \(\Q(\zeta_{13})^+\)
Generator \(w\), with minimal polynomial \(x^{6} - x^{5} - 5x^{4} + 4x^{3} + 6x^{2} - 3x - 1\); narrow class number \(1\) and class number \(1\).
Form
Weight: | $[2, 2, 2, 2, 2, 2]$ |
Level: | $[79,79,-w^{3} + w^{2} + 4w - 1]$ |
Dimension: | $1$ |
CM: | no |
Base change: | no |
Newspace dimension: | $9$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
13 | $[13, 13, w^{5} - 5w^{3} + 4w]$ | $-2$ |
25 | $[25, 5, w^{5} - 5w^{3} + 6w - 1]$ | $-2$ |
25 | $[25, 5, -w^{3} + w^{2} + 3w - 1]$ | $-2$ |
25 | $[25, 5, w^{5} - 4w^{3} - w^{2} + 3w + 2]$ | $\phantom{-}10$ |
27 | $[27, 3, w^{4} - w^{3} - 4w^{2} + 2w + 2]$ | $\phantom{-}8$ |
27 | $[27, 3, w^{4} - w^{3} - 4w^{2} + 2w + 3]$ | $-4$ |
53 | $[53, 53, -w^{4} + w^{3} + 3w^{2} - 2w + 1]$ | $\phantom{-}6$ |
53 | $[53, 53, -w^{4} + w^{3} + 4w^{2} - 3w - 4]$ | $\phantom{-}6$ |
53 | $[53, 53, -w^{5} + w^{4} + 4w^{3} - 4w^{2} - 3w + 1]$ | $\phantom{-}6$ |
53 | $[53, 53, w^{3} - 2w - 2]$ | $\phantom{-}6$ |
53 | $[53, 53, w^{5} - 5w^{3} - w^{2} + 5w]$ | $-6$ |
53 | $[53, 53, -w^{4} + 4w^{2} + w - 4]$ | $\phantom{-}6$ |
64 | $[64, 2, -2]$ | $-11$ |
79 | $[79, 79, -2w^{5} + w^{4} + 9w^{3} - 3w^{2} - 9w + 2]$ | $-8$ |
79 | $[79, 79, -w^{5} - w^{4} + 5w^{3} + 4w^{2} - 6w - 1]$ | $-8$ |
79 | $[79, 79, w^{3} - w^{2} - 4w + 1]$ | $-1$ |
79 | $[79, 79, -2w^{5} + 2w^{4} + 9w^{3} - 7w^{2} - 9w + 3]$ | $\phantom{-}4$ |
79 | $[79, 79, -2w^{4} + w^{3} + 7w^{2} - 3w - 3]$ | $-8$ |
79 | $[79, 79, -w^{5} + 6w^{3} - w^{2} - 8w + 1]$ | $-8$ |
103 | $[103, 103, 2w^{4} - 7w^{2} - w + 3]$ | $\phantom{-}8$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$79$ | $[79,79,-w^{3} + w^{2} + 4w - 1]$ | $1$ |