/* This code can be loaded, or copied and pasted, into Magma. It will load the data associated to the HMF, including the field, level, and Hecke and Atkin-Lehner eigenvalue data. At the *bottom* of the file, there is code to recreate the Hilbert modular form in Magma, by creating the HMF space and cutting out the corresponding Hecke irreducible subspace. From there, you can ask for more eigenvalues or modify as desired. It is commented out, as this computation may be lengthy. */ P := PolynomialRing(Rationals()); g := P![-1, -3, 6, 4, -5, -1, 1]; F := NumberField(g); ZF := Integers(F); NN := ideal; primesArray := [ [13, 13, w^5 - 5*w^3 + 4*w], [25, 5, w^5 - 5*w^3 + 6*w - 1], [25, 5, -w^3 + w^2 + 3*w - 1], [25, 5, w^5 - 4*w^3 - w^2 + 3*w + 2], [27, 3, w^4 - w^3 - 4*w^2 + 2*w + 2], [27, 3, w^4 - w^3 - 4*w^2 + 2*w + 3], [53, 53, -w^4 + w^3 + 3*w^2 - 2*w + 1], [53, 53, -w^4 + w^3 + 4*w^2 - 3*w - 4], [53, 53, -w^5 + w^4 + 4*w^3 - 4*w^2 - 3*w + 1], [53, 53, w^3 - 2*w - 2], [53, 53, w^5 - 5*w^3 - w^2 + 5*w], [53, 53, -w^4 + 4*w^2 + w - 4], [64, 2, -2], [79, 79, -2*w^5 + w^4 + 9*w^3 - 3*w^2 - 9*w + 2], [79, 79, -w^5 - w^4 + 5*w^3 + 4*w^2 - 6*w - 1], [79, 79, w^3 - w^2 - 4*w + 1], [79, 79, -2*w^5 + 2*w^4 + 9*w^3 - 7*w^2 - 9*w + 3], [79, 79, -2*w^4 + w^3 + 7*w^2 - 3*w - 3], [79, 79, -w^5 + 6*w^3 - w^2 - 8*w + 1], [103, 103, 2*w^4 - 7*w^2 - w + 3], [103, 103, w^5 - w^4 - 4*w^3 + 5*w^2 + 2*w - 4], [103, 103, -w^5 - w^4 + 4*w^3 + 4*w^2 - 2*w - 3], [103, 103, w^5 - 2*w^4 - 4*w^3 + 6*w^2 + 4*w - 1], [103, 103, -w^4 + w^3 + 5*w^2 - 3*w - 4], [103, 103, 2*w^5 - w^4 - 10*w^3 + 3*w^2 + 10*w - 1], [131, 131, w^5 - w^4 - 5*w^3 + 3*w^2 + 4*w - 1], [131, 131, -w^5 + 2*w^4 + 4*w^3 - 6*w^2 - 4*w + 2], [131, 131, w^5 - w^4 - 4*w^3 + 5*w^2 + 2*w - 5], [131, 131, 2*w^4 - 7*w^2 - w + 2], [131, 131, -2*w^5 + w^4 + 9*w^3 - 2*w^2 - 8*w], [131, 131, 2*w^5 - w^4 - 10*w^3 + 3*w^2 + 10*w], [157, 157, -w^5 - w^4 + 5*w^3 + 5*w^2 - 6*w - 3], [157, 157, -2*w^3 + w^2 + 5*w - 2], [157, 157, -w^5 - w^4 + 4*w^3 + 5*w^2 - 3*w - 3], [157, 157, -w^5 + 5*w^3 - 7*w], [157, 157, -2*w^5 + w^4 + 8*w^3 - 3*w^2 - 6*w + 2], [157, 157, -w^5 + w^4 + 5*w^3 - 4*w^2 - 7*w + 2], [181, 181, w^2 - 2*w - 2], [181, 181, 2*w^5 - 9*w^3 + 7*w], [181, 181, -w^5 + 2*w^4 + 5*w^3 - 8*w^2 - 5*w + 4], [181, 181, -w^5 + w^4 + 6*w^3 - 3*w^2 - 9*w + 1], [181, 181, 2*w^5 - 2*w^4 - 8*w^3 + 6*w^2 + 5*w - 2], [181, 181, w^4 - 2*w^2 - 2], [233, 233, 2*w^3 - w^2 - 5*w + 1], [233, 233, -w^5 - w^4 + 6*w^3 + 3*w^2 - 8*w], [233, 233, w^5 - w^4 - 5*w^3 + 4*w^2 + 7*w - 3], [233, 233, w^5 + w^4 - 5*w^3 - 5*w^2 + 6*w + 4], [233, 233, -w^5 + 4*w^3 + 2*w^2 - 2*w - 3], [233, 233, 2*w^5 - w^4 - 8*w^3 + 3*w^2 + 6*w - 1], [311, 311, 2*w^5 - 2*w^4 - 9*w^3 + 6*w^2 + 8*w - 2], [311, 311, w^4 + w^3 - 3*w^2 - 4*w + 1], [311, 311, -w^5 + 2*w^4 + 5*w^3 - 7*w^2 - 5*w + 2], [311, 311, w^5 - w^4 - 4*w^3 + 4*w^2 + w - 3], [311, 311, w^4 - 2*w^2 - w - 2], [311, 311, -2*w^5 + w^4 + 9*w^3 - 4*w^2 - 7*w + 2], [313, 313, -w^5 + 5*w^3 + w^2 - 4*w - 3], [313, 313, -w^5 + 6*w^3 - 7*w + 1], [313, 313, -w^4 + w^3 + 5*w^2 - 3*w - 3], [313, 313, -w^5 + w^4 + 3*w^3 - 4*w^2 + 4], [313, 313, -w^5 + 2*w^4 + 4*w^3 - 7*w^2 - 4*w + 2], [313, 313, -2*w^4 + w^3 + 7*w^2 - 2*w - 4], [337, 337, 2*w^5 - w^4 - 7*w^3 + 2*w^2 + 2*w + 2], [337, 337, w^5 - 2*w^4 - 3*w^3 + 7*w^2 + 2*w - 3], [337, 337, 2*w^5 - w^4 - 9*w^3 + 2*w^2 + 10*w - 1], [337, 337, -2*w^5 - w^4 + 9*w^3 + 4*w^2 - 8*w], [337, 337, 3*w^5 - 2*w^4 - 13*w^3 + 7*w^2 + 11*w - 5], [337, 337, w^4 - w^3 - 2*w^2 + 4*w], [389, 389, 2*w^5 - w^4 - 9*w^3 + 4*w^2 + 7*w], [389, 389, -2*w^5 + 3*w^4 + 8*w^3 - 9*w^2 - 7*w + 3], [389, 389, -w^5 + 2*w^4 + 5*w^3 - 7*w^2 - 5*w], [389, 389, -2*w^5 + 3*w^4 + 9*w^3 - 10*w^2 - 8*w + 2], [389, 389, -3*w^5 + w^4 + 14*w^3 - 2*w^2 - 12*w], [389, 389, -w^5 + w^4 + 5*w^3 - 3*w^2 - 3*w + 1], [443, 443, -2*w^5 + w^4 + 8*w^3 - w^2 - 7*w - 3], [443, 443, 2*w^5 - w^4 - 9*w^3 + 4*w^2 + 8*w], [443, 443, w^5 - 3*w^4 - 4*w^3 + 11*w^2 + 2*w - 4], [443, 443, 2*w^5 - w^4 - 9*w^3 + 2*w^2 + 8*w - 2], [443, 443, -2*w^4 + 2*w^3 + 7*w^2 - 4*w - 3], [443, 443, -3*w^5 + w^4 + 15*w^3 - 3*w^2 - 17*w + 2], [467, 467, 2*w^5 - 2*w^4 - 9*w^3 + 6*w^2 + 10*w - 1], [467, 467, w^5 + w^4 - 5*w^3 - 6*w^2 + 6*w + 5], [467, 467, -w^5 - 2*w^4 + 5*w^3 + 7*w^2 - 5*w - 3], [467, 467, -2*w^5 + w^4 + 11*w^3 - 4*w^2 - 13*w + 3], [467, 467, 3*w^5 - 2*w^4 - 13*w^3 + 6*w^2 + 11*w - 1], [467, 467, -2*w^5 + w^4 + 9*w^3 - w^2 - 8*w - 3], [521, 521, w^5 + 2*w^4 - 6*w^3 - 7*w^2 + 7*w + 3], [521, 521, 2*w^5 - 2*w^4 - 8*w^3 + 6*w^2 + 7*w - 1], [521, 521, -w^5 + w^4 + 6*w^3 - 4*w^2 - 10*w + 3], [521, 521, 2*w^5 - 3*w^4 - 9*w^3 + 10*w^2 + 9*w - 3], [521, 521, -2*w^5 + 11*w^3 - 13*w + 1], [521, 521, 3*w^5 - w^4 - 13*w^3 + 3*w^2 + 11*w - 1], [547, 547, w^4 + w^3 - 5*w^2 - 3*w + 1], [547, 547, -2*w^5 + 3*w^4 + 9*w^3 - 11*w^2 - 10*w + 6], [547, 547, w^4 - w^3 - w^2 + 3*w - 3], [547, 547, 2*w^4 + w^3 - 9*w^2 - 2*w + 6], [547, 547, 3*w^5 - w^4 - 13*w^3 + 3*w^2 + 11*w - 2], [547, 547, -w^5 + w^4 + 6*w^3 - 4*w^2 - 10*w + 2], [571, 571, -w^5 + 4*w^3 + 3*w^2 - 3*w - 4], [571, 571, -w^5 - w^4 + 3*w^3 + 6*w^2 - 5], [571, 571, w^5 - 6*w^3 + 2*w^2 + 9*w - 4], [571, 571, 2*w^5 - 9*w^3 - w^2 + 10*w + 1], [571, 571, 2*w^5 - 11*w^3 + w^2 + 13*w - 3], [571, 571, -w^5 + 7*w^3 - w^2 - 12*w + 2], [599, 599, -2*w^5 + w^4 + 8*w^3 - 5*w^2 - 5*w + 5], [599, 599, w^5 - w^4 - 6*w^3 + 4*w^2 + 6*w - 2], [599, 599, w^4 - 2*w^3 - 5*w^2 + 7*w + 4], [599, 599, -2*w^5 + 10*w^3 - w^2 - 11*w + 3], [599, 599, w^5 - 3*w^4 - 5*w^3 + 11*w^2 + 7*w - 5], [599, 599, -w^5 + w^4 + 6*w^3 - 3*w^2 - 8*w + 3], [677, 677, -w^5 - 2*w^4 + 6*w^3 + 8*w^2 - 9*w - 4], [677, 677, -3*w^5 + 2*w^4 + 13*w^3 - 7*w^2 - 12*w + 4], [677, 677, w^4 + w^3 - 5*w^2 - 5*w + 4], [677, 677, -2*w^5 + 9*w^3 - w^2 - 7*w + 1], [677, 677, w^5 - 5*w^3 + 2*w^2 + 5*w - 5], [677, 677, -w^5 - w^4 + 7*w^3 + 2*w^2 - 10*w + 1], [701, 701, w^5 - 3*w^4 - 3*w^3 + 11*w^2 + 2*w - 6], [701, 701, w^5 + w^4 - 6*w^3 - 5*w^2 + 6*w + 4], [701, 701, -w^5 - w^4 + 3*w^3 + 4*w^2 + 2*w - 2], [701, 701, 3*w^5 - 2*w^4 - 14*w^3 + 5*w^2 + 14*w], [701, 701, 3*w^5 - 2*w^4 - 14*w^3 + 8*w^2 + 13*w - 5], [701, 701, -w^5 + 2*w^4 + 3*w^3 - 7*w^2 + 2*w + 3], [727, 727, w^5 + 2*w^4 - 5*w^3 - 8*w^2 + 6*w + 3], [727, 727, -w^5 + 4*w^3 + 3*w^2 - 3*w - 6], [727, 727, -w^5 - w^4 + 5*w^3 + 2*w^2 - 4*w + 2], [727, 727, 3*w^5 - 2*w^4 - 13*w^3 + 6*w^2 + 12*w - 3], [727, 727, -2*w^5 + 11*w^3 - w^2 - 13*w + 1], [727, 727, w^5 - 3*w^4 - 4*w^3 + 10*w^2 + 5*w - 4], [857, 857, -w^5 + 3*w^4 + 5*w^3 - 11*w^2 - 5*w + 5], [857, 857, -w^5 - 2*w^4 + 4*w^3 + 9*w^2 - 3*w - 7], [857, 857, 2*w^5 + w^4 - 9*w^3 - 4*w^2 + 6*w + 3], [857, 857, 2*w^5 - 3*w^4 - 7*w^3 + 10*w^2 + 2*w - 5], [857, 857, -w^5 + 6*w^3 - 2*w^2 - 8*w + 2], [857, 857, -3*w^3 + w^2 + 9*w], [859, 859, 2*w^4 - 2*w^3 - 5*w^2 + 5*w - 2], [859, 859, -2*w^5 + 9*w^3 - 6*w - 2], [859, 859, -w^4 - w^3 + 2*w^2 + 3*w + 4], [859, 859, -w^5 - 2*w^4 + 6*w^3 + 9*w^2 - 7*w - 7], [859, 859, -2*w^5 - w^4 + 10*w^3 + 4*w^2 - 9*w - 4], [859, 859, -w^5 - w^4 + 4*w^3 + 4*w^2 - 3*w + 1], [883, 883, 2*w^5 + w^4 - 10*w^3 - 4*w^2 + 11*w], [883, 883, -2*w^5 + w^4 + 9*w^3 - 3*w^2 - 10*w + 3], [883, 883, 3*w^5 - w^4 - 13*w^3 + 2*w^2 + 12*w + 1], [883, 883, 3*w^5 - 2*w^4 - 12*w^3 + 6*w^2 + 8*w - 3], [883, 883, w^5 - 6*w^3 + w^2 + 10*w - 3], [883, 883, -2*w^5 + 11*w^3 - w^2 - 14*w + 3], [911, 911, -3*w^5 + 15*w^3 - 15*w + 1], [911, 911, -2*w^5 + 2*w^4 + 8*w^3 - 8*w^2 - 6*w + 3], [911, 911, -2*w^5 + 11*w^3 - 13*w + 2], [911, 911, -2*w^5 + 10*w^3 + 2*w^2 - 10*w - 1], [911, 911, 2*w^4 - 2*w^3 - 8*w^2 + 6*w + 7], [911, 911, -3*w^4 + 12*w^2 - 7], [937, 937, 3*w^4 - w^3 - 10*w^2 + 2*w + 4], [937, 937, -w^5 + 2*w^4 + 5*w^3 - 9*w^2 - 6*w + 5], [937, 937, -w^5 + 2*w^4 + 2*w^3 - 6*w^2 + 3*w + 3], [937, 937, 2*w^5 - w^4 - 11*w^3 + 4*w^2 + 12*w - 3], [937, 937, -2*w^5 + 11*w^3 + w^2 - 14*w], [937, 937, 2*w^5 + w^4 - 9*w^3 - 5*w^2 + 7*w + 5], [961, 31, -3*w^5 + w^4 + 12*w^3 - 3*w^2 - 8*w + 2], [961, 31, -2*w^5 + 2*w^4 + 10*w^3 - 7*w^2 - 13*w + 3], [961, 31, -w^5 + w^4 + 7*w^3 - 5*w^2 - 10*w + 4]]; primes := [ideal : I in primesArray]; heckePol := x^3 - 5*x^2 - 11*x + 42; K := NumberField(heckePol); heckeEigenvaluesArray := [e, 1/3*e^2 - 1/3*e - 3, 1/3*e^2 - 4/3*e - 8, e - 5, -e + 2, 2/3*e^2 - 8/3*e - 6, -1/3*e^2 + 1/3*e + 7, e^2 - 3*e - 9, -1, -2/3*e^2 - 1/3*e + 12, -2*e + 4, -2/3*e^2 + 8/3*e + 10, 2*e - 1, 4/3*e^2 - 10/3*e - 12, -e^2 + e + 17, -1/3*e^2 + 7/3*e + 7, 2/3*e^2 + 1/3*e - 11, 4, -4/3*e^2 + 7/3*e + 15, -e^2 + 3*e + 13, 4/3*e^2 - 13/3*e - 14, -1/3*e^2 + 10/3*e - 2, 2/3*e^2 - 11/3*e - 11, -2/3*e^2 - 1/3*e + 22, -e^2 + 3*e + 13, -4/3*e^2 + 4/3*e + 24, e^2 - 24, 1/3*e^2 + 2/3*e - 4, -1/3*e^2 - 2/3*e + 6, -e^2 + 3*e + 7, -1/3*e^2 - 2/3*e + 23, 1/3*e^2 + 8/3*e - 8, e^2 - e - 9, -2*e^2 + 6*e + 16, -4/3*e^2 + 10/3*e + 20, 4, -4/3*e^2 + 1/3*e + 22, 2*e^2 - 6*e - 18, 2*e + 4, 4/3*e^2 - 4/3*e - 12, -5/3*e^2 + 5/3*e + 27, -e^2 + 3*e + 17, 1/3*e^2 - 10/3*e + 3, -e^2 + 3*e - 5, 4/3*e^2 - 13/3*e - 15, 2/3*e^2 - 2/3*e - 14, 1/3*e^2 - 4/3*e - 9, -e + 18, 6, 8/3*e^2 - 23/3*e - 16, -e^2 + 5*e + 3, -e^2 + e + 17, -7/3*e^2 + 4/3*e + 35, -4/3*e^2 + 4/3*e + 10, 4/3*e^2 + 2/3*e - 26, -11/3*e^2 + 29/3*e + 31, -1/3*e^2 - 2/3*e + 15, 5/3*e^2 - 11/3*e - 33, -2/3*e^2 + 2/3*e - 4, 1/3*e^2 + 2/3*e + 5, e^2 - 3*e - 13, e^2 - e - 19, 2*e + 4, 6*e - 10, 4/3*e^2 - 7/3*e - 34, -2*e^2 + 8*e + 16, 6*e - 10, 2/3*e^2 - 8/3*e - 22, 3*e^2 - 9*e - 27, 1/3*e^2 + 2/3*e - 14, -4/3*e^2 + 10/3*e + 24, 2*e^2 + e - 37, -2/3*e^2 + 11/3*e + 9, 7*e - 11, -2/3*e^2 + 2/3*e + 8, 2*e^2 - 7*e - 12, -4/3*e^2 + 16/3*e + 14, -1/3*e^2 + 22/3*e - 1, -1/3*e^2 - 5/3*e + 5, -4/3*e^2 - 5/3*e + 20, -e^2 + 3*e + 35, 8/3*e^2 - 8/3*e - 34, -4*e - 8, -2/3*e^2 + 5/3*e + 20, -4/3*e^2 - 2/3*e + 8, -2/3*e^2 + 17/3*e + 3, 5/3*e^2 - 20/3*e + 2, 2/3*e^2 - 14/3*e - 14, 10/3*e^2 - 19/3*e - 38, e + 14, 4/3*e^2 - 4/3*e - 14, 5/3*e^2 - 14/3*e - 36, -2/3*e^2 + 2/3*e + 32, -4/3*e^2 - 2/3*e + 8, -1/3*e^2 - 2/3*e + 34, -4*e - 8, 2/3*e^2 + 7/3*e - 27, -5/3*e^2 - 4/3*e + 41, -28, 2/3*e^2 - 23/3*e + 2, e^2 + 2*e - 26, -28, -7/3*e^2 + 1/3*e + 49, -1/3*e^2 - 14/3*e + 32, 5/3*e^2 - 5/3*e - 37, -e^2 + 6*e, -2/3*e^2 - 4/3*e + 6, -2/3*e^2 + 14/3*e + 2, 5/3*e^2 - 17/3*e - 23, -2*e^2 + 3*e + 42, 4*e - 20, -1/3*e^2 + 1/3*e - 13, -2/3*e^2 - 4/3*e + 38, -4/3*e^2 + 7/3*e + 5, 7/3*e^2 - 22/3*e + 1, -2/3*e^2 - 7/3*e + 6, 5/3*e^2 - 32/3*e - 26, 1/3*e^2 - 1/3*e + 25, 2*e^2 - 2*e - 42, 1/3*e^2 - 4/3*e - 14, 7/3*e^2 - 25/3*e - 31, 2/3*e^2 - 11/3*e - 16, 2*e^2 - 4*e - 34, 2*e^2 - 5*e - 22, -2/3*e^2 - 7/3*e + 24, -7/3*e^2 - 5/3*e + 69, -11/3*e^2 + 8/3*e + 56, -2/3*e^2 - 16/3*e + 10, 3*e^2 - 8*e - 10, 2*e^2 - 4*e - 16, -1/3*e^2 + 7/3*e - 11, -4/3*e^2 + 4/3*e + 26, 6*e - 18, e^2 + 6*e - 9, -8/3*e^2 + 20/3*e + 52, -4*e, -10*e + 4, -11/3*e^2 + 5/3*e + 69, 4/3*e^2 - 25/3*e - 21, -4*e^2 + 8*e + 48, -8*e + 4, -2*e^2 + 7*e + 10, 4/3*e^2 - 13/3*e + 23, 1/3*e^2 + 26/3*e - 6, -1/3*e^2 - 5/3*e + 27, 4/3*e^2 + 17/3*e - 22, -4/3*e^2 + 4/3*e + 40, 5/3*e^2 - 11/3*e - 43, -11/3*e^2 - 4/3*e + 68, -2/3*e^2 + 11/3*e + 1, 2/3*e^2 - 14/3*e + 28, -11/3*e^2 + 14/3*e + 37, -2*e + 14, -e^2 + 3*e + 47, 4/3*e^2 - 7/3*e - 4, 3*e^2 - 10*e - 50, -1/3*e^2 + 7/3*e + 27, -14/3*e^2 + 44/3*e + 36, 4/3*e^2 - 28/3*e - 30, -e^2 - 3*e + 9]; heckeEigenvalues := AssociativeArray(); for i := 1 to #heckeEigenvaluesArray do heckeEigenvalues[primes[i]] := heckeEigenvaluesArray[i]; end for; ALEigenvalues := AssociativeArray(); ALEigenvalues[ideal] := 1; // EXAMPLE: // pp := Factorization(2*ZF)[1][1]; // heckeEigenvalues[pp]; print "To reconstruct the Hilbert newform f, type f, iso := Explode(make_newform());"; function make_newform(); M := HilbertCuspForms(F, NN); S := NewSubspace(M); // SetVerbose("ModFrmHil", 1); NFD := NewformDecomposition(S); newforms := [* Eigenform(U) : U in NFD *]; if #newforms eq 0 then; print "No Hilbert newforms at this level"; return 0; end if; print "Testing ", #newforms, " possible newforms"; newforms := [* f: f in newforms | IsIsomorphic(BaseField(f), K) *]; print #newforms, " newforms have the correct Hecke field"; if #newforms eq 0 then; print "No Hilbert newform found with the correct Hecke field"; return 0; end if; autos := Automorphisms(K); xnewforms := [* *]; for f in newforms do; if K eq RationalField() then; Append(~xnewforms, [* f, autos[1] *]); else; flag, iso := IsIsomorphic(K,BaseField(f)); for a in autos do; Append(~xnewforms, [* f, a*iso *]); end for; end if; end for; newforms := xnewforms; for P in primes do; xnewforms := [* *]; for f_iso in newforms do; f, iso := Explode(f_iso); if HeckeEigenvalue(f,P) eq iso(heckeEigenvalues[P]) then; Append(~xnewforms, f_iso); end if; end for; newforms := xnewforms; if #newforms eq 0 then; print "No Hilbert newform found which matches the Hecke eigenvalues"; return 0; else if #newforms eq 1 then; print "success: unique match"; return newforms[1]; end if; end if; end for; print #newforms, "Hilbert newforms found which match the Hecke eigenvalues"; return newforms[1]; end function;