Properties

Label 6.6.300125.1-1.1-a
Base field 6.6.300125.1
Weight $[2, 2, 2, 2, 2, 2]$
Level norm $1$
Level $[1, 1, 1]$
Dimension $1$
CM no
Base change yes

Related objects

Downloads

Learn more

Base field 6.6.300125.1

Generator \(w\), with minimal polynomial \(x^{6} - x^{5} - 7x^{4} + 2x^{3} + 7x^{2} - 2x - 1\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2, 2, 2]$
Level: $[1, 1, 1]$
Dimension: $1$
CM: no
Base change: yes
Newspace dimension: $1$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
29 $[29, 29, -9w^{5} + 3w^{4} + 64w^{3} + 26w^{2} - 40w - 10]$ $-7$
29 $[29, 29, w^{5} - 7w^{3} - 5w^{2} + 2w + 2]$ $-7$
29 $[29, 29, w^{4} - w^{3} - 6w^{2} + 2]$ $-7$
29 $[29, 29, 5w^{5} - w^{4} - 36w^{3} - 19w^{2} + 21w + 9]$ $-7$
29 $[29, 29, -w^{5} + w^{4} + 7w^{3} - 2w^{2} - 6w + 1]$ $-7$
29 $[29, 29, 2w^{5} - 15w^{3} - 10w^{2} + 11w + 5]$ $-7$
41 $[41, 41, 5w^{5} - w^{4} - 36w^{3} - 18w^{2} + 21w + 5]$ $\phantom{-}5$
41 $[41, 41, -5w^{5} + 2w^{4} + 36w^{3} + 11w^{2} - 25w - 2]$ $\phantom{-}5$
41 $[41, 41, 6w^{5} - w^{4} - 44w^{3} - 23w^{2} + 30w + 8]$ $\phantom{-}5$
41 $[41, 41, 13w^{5} - 4w^{4} - 93w^{3} - 39w^{2} + 59w + 16]$ $\phantom{-}5$
41 $[41, 41, -4w^{5} + 30w^{3} + 19w^{2} - 19w - 8]$ $\phantom{-}5$
41 $[41, 41, w^{5} - 7w^{3} - 6w^{2} + 2w + 3]$ $\phantom{-}5$
49 $[49, 7, -5w^{5} + w^{4} + 36w^{3} + 19w^{2} - 22w - 6]$ $\phantom{-}13$
64 $[64, 2, -2]$ $-9$
71 $[71, 71, -8w^{5} + w^{4} + 58w^{3} + 34w^{2} - 34w - 16]$ $-2$
71 $[71, 71, -6w^{5} + 2w^{4} + 42w^{3} + 18w^{2} - 23w - 6]$ $-2$
71 $[71, 71, -8w^{5} + 2w^{4} + 58w^{3} + 27w^{2} - 38w - 10]$ $-2$
71 $[71, 71, 4w^{5} - 30w^{3} - 19w^{2} + 20w + 8]$ $-2$
71 $[71, 71, -10w^{5} + 3w^{4} + 72w^{3} + 30w^{2} - 48w - 10]$ $-2$
71 $[71, 71, -8w^{5} + 2w^{4} + 58w^{3} + 26w^{2} - 37w - 8]$ $-2$
Display number of eigenvalues

Atkin-Lehner eigenvalues

This form has no Atkin-Lehner eigenvalues since the level is \((1)\).