Base field 6.6.300125.1
Generator \(w\), with minimal polynomial \(x^{6} - x^{5} - 7x^{4} + 2x^{3} + 7x^{2} - 2x - 1\); narrow class number \(1\) and class number \(1\).
Form
Weight: | $[2, 2, 2, 2, 2, 2]$ |
Level: | $[1, 1, 1]$ |
Dimension: | $1$ |
CM: | no |
Base change: | yes |
Newspace dimension: | $1$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
29 | $[29, 29, -9w^{5} + 3w^{4} + 64w^{3} + 26w^{2} - 40w - 10]$ | $-7$ |
29 | $[29, 29, w^{5} - 7w^{3} - 5w^{2} + 2w + 2]$ | $-7$ |
29 | $[29, 29, w^{4} - w^{3} - 6w^{2} + 2]$ | $-7$ |
29 | $[29, 29, 5w^{5} - w^{4} - 36w^{3} - 19w^{2} + 21w + 9]$ | $-7$ |
29 | $[29, 29, -w^{5} + w^{4} + 7w^{3} - 2w^{2} - 6w + 1]$ | $-7$ |
29 | $[29, 29, 2w^{5} - 15w^{3} - 10w^{2} + 11w + 5]$ | $-7$ |
41 | $[41, 41, 5w^{5} - w^{4} - 36w^{3} - 18w^{2} + 21w + 5]$ | $\phantom{-}5$ |
41 | $[41, 41, -5w^{5} + 2w^{4} + 36w^{3} + 11w^{2} - 25w - 2]$ | $\phantom{-}5$ |
41 | $[41, 41, 6w^{5} - w^{4} - 44w^{3} - 23w^{2} + 30w + 8]$ | $\phantom{-}5$ |
41 | $[41, 41, 13w^{5} - 4w^{4} - 93w^{3} - 39w^{2} + 59w + 16]$ | $\phantom{-}5$ |
41 | $[41, 41, -4w^{5} + 30w^{3} + 19w^{2} - 19w - 8]$ | $\phantom{-}5$ |
41 | $[41, 41, w^{5} - 7w^{3} - 6w^{2} + 2w + 3]$ | $\phantom{-}5$ |
49 | $[49, 7, -5w^{5} + w^{4} + 36w^{3} + 19w^{2} - 22w - 6]$ | $\phantom{-}13$ |
64 | $[64, 2, -2]$ | $-9$ |
71 | $[71, 71, -8w^{5} + w^{4} + 58w^{3} + 34w^{2} - 34w - 16]$ | $-2$ |
71 | $[71, 71, -6w^{5} + 2w^{4} + 42w^{3} + 18w^{2} - 23w - 6]$ | $-2$ |
71 | $[71, 71, -8w^{5} + 2w^{4} + 58w^{3} + 27w^{2} - 38w - 10]$ | $-2$ |
71 | $[71, 71, 4w^{5} - 30w^{3} - 19w^{2} + 20w + 8]$ | $-2$ |
71 | $[71, 71, -10w^{5} + 3w^{4} + 72w^{3} + 30w^{2} - 48w - 10]$ | $-2$ |
71 | $[71, 71, -8w^{5} + 2w^{4} + 58w^{3} + 26w^{2} - 37w - 8]$ | $-2$ |
Atkin-Lehner eigenvalues
This form has no Atkin-Lehner eigenvalues since the level is \((1)\).