Properties

Label 6.6.1541581.1-25.1-b
Base field 6.6.1541581.1
Weight $[2, 2, 2, 2, 2, 2]$
Level norm $25$
Level $[25, 25, w^{4} - 2w^{3} - 3w^{2} + 3w + 1]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 6.6.1541581.1

Generator \(w\), with minimal polynomial \(x^{6} - x^{5} - 6x^{4} + 2x^{3} + 9x^{2} + x - 1\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2, 2, 2]$
Level: $[25, 25, w^{4} - 2w^{3} - 3w^{2} + 3w + 1]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $20$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
5 $[5, 5, w^{5} - 2w^{4} - 4w^{3} + 5w^{2} + 5w]$ $\phantom{-}0$
11 $[11, 11, w^{5} - 2w^{4} - 3w^{3} + 4w^{2} + w + 1]$ $-3$
11 $[11, 11, w^{2} - w - 2]$ $-2$
17 $[17, 17, w^{5} - 2w^{4} - 4w^{3} + 6w^{2} + 3w - 3]$ $\phantom{-}6$
27 $[27, 3, w^{5} - w^{4} - 5w^{3} + w^{2} + 6w + 1]$ $-2$
27 $[27, 3, w^{4} - 2w^{3} - 3w^{2} + 5w]$ $-4$
37 $[37, 37, -w^{2} + 2w + 2]$ $-8$
47 $[47, 47, -w^{5} + 2w^{4} + 3w^{3} - 3w^{2} - 2w - 1]$ $-9$
53 $[53, 53, -w^{5} + 3w^{4} + 2w^{3} - 8w^{2} + 3]$ $\phantom{-}7$
59 $[59, 59, w^{4} - 2w^{3} - 2w^{2} + 3w - 2]$ $\phantom{-}12$
64 $[64, 2, -2]$ $\phantom{-}3$
67 $[67, 67, w^{5} - 2w^{4} - 3w^{3} + 4w^{2} + w - 2]$ $\phantom{-}7$
67 $[67, 67, -w^{5} + 3w^{4} + w^{3} - 7w^{2} + 3w + 2]$ $-6$
71 $[71, 71, w^{4} - w^{3} - 4w^{2} + 2w + 1]$ $-1$
71 $[71, 71, w^{4} - w^{3} - 5w^{2} + 2w + 4]$ $\phantom{-}3$
73 $[73, 73, 2w^{5} - 4w^{4} - 7w^{3} + 10w^{2} + 5w - 3]$ $-3$
83 $[83, 83, w^{4} - 2w^{3} - 4w^{2} + 5w + 2]$ $\phantom{-}5$
83 $[83, 83, w^{5} - 3w^{4} - 2w^{3} + 9w^{2} - 3]$ $-5$
89 $[89, 89, -w^{5} + w^{4} + 6w^{3} - 2w^{2} - 8w + 1]$ $-7$
97 $[97, 97, 2w^{5} - 4w^{4} - 7w^{3} + 8w^{2} + 7w]$ $\phantom{-}0$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$5$ $[5, 5, w^{5} - 2w^{4} - 4w^{3} + 5w^{2} + 5w]$ $-1$