Properties

 Base field 6.6.1397493.1 Weight [2, 2, 2, 2, 2, 2] Level norm 37 Level $[37,37,-w^{4} + 4w^{3} - w^{2} - 7w + 3]$ Label 6.6.1397493.1-37.2-d Dimension 26 CM no Base change no

Related objects

• L-function not available

Base field 6.6.1397493.1

Generator $$w$$, with minimal polynomial $$x^{6} - 3x^{5} - 3x^{4} + 10x^{3} + 3x^{2} - 6x + 1$$; narrow class number $$2$$ and class number $$1$$.

Form

 Weight [2, 2, 2, 2, 2, 2] Level $[37,37,-w^{4} + 4w^{3} - w^{2} - 7w + 3]$ Label 6.6.1397493.1-37.2-d Dimension 26 Is CM no Is base change no Parent newspace dimension 38

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{26} - 284x^{24} + 34820x^{22} - 2421506x^{20} + 105680938x^{18} - 3028806295x^{16} + 58034878961x^{14} - 742535086055x^{12} + 6219566614940x^{10} - 32643357712672x^{8} + 98714191895424x^{6} - 144786482290432x^{4} + 65662630910976x^{2} - 412323840000$$
Norm Prime Eigenvalue
3 $[3, 3, w - 1]$ $...$
17 $[17, 17, -w^{2} + 2w + 1]$ $...$
17 $[17, 17, -w^{3} + w^{2} + 4w]$ $\phantom{-}e$
19 $[19, 19, w^{5} - 3w^{4} - 2w^{3} + 8w^{2} + w - 4]$ $...$
19 $[19, 19, w^{2} - w - 1]$ $...$
37 $[37, 37, w^{4} - 2w^{3} - 3w^{2} + 3w + 2]$ $...$
37 $[37, 37, w^{4} - 4w^{3} + w^{2} + 7w - 3]$ $-1$
53 $[53, 53, 2w^{5} - 6w^{4} - 6w^{3} + 18w^{2} + 9w - 6]$ $...$
53 $[53, 53, -w^{5} + 3w^{4} + 3w^{3} - 9w^{2} - 3w + 2]$ $...$
64 $[64, 2, -2]$ $...$
71 $[71, 71, -w^{5} + 4w^{4} - w^{3} - 8w^{2} + 3w - 1]$ $...$
71 $[71, 71, 2w^{5} - 5w^{4} - 8w^{3} + 15w^{2} + 12w - 6]$ $...$
71 $[71, 71, 2w^{5} - 6w^{4} - 6w^{3} + 18w^{2} + 9w - 7]$ $...$
73 $[73, 73, -2w^{5} + 6w^{4} + 5w^{3} - 16w^{2} - 7w + 3]$ $...$
73 $[73, 73, -2w^{5} + 6w^{4} + 5w^{3} - 17w^{2} - 6w + 6]$ $...$
89 $[89, 89, w^{5} - 2w^{4} - 5w^{3} + 6w^{2} + 8w - 4]$ $...$
89 $[89, 89, w^{5} - w^{4} - 9w^{3} + 7w^{2} + 16w - 6]$ $...$
89 $[89, 89, 2w^{5} - 6w^{4} - 4w^{3} + 15w^{2} + 3w - 3]$ $...$
89 $[89, 89, w^{5} - 2w^{4} - 6w^{3} + 8w^{2} + 10w - 6]$ $...$
107 $[107, 107, w^{5} - 2w^{4} - 7w^{3} + 10w^{2} + 12w - 6]$ $...$
 Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
37 $[37,37,-w^{4} + 4w^{3} - w^{2} - 7w + 3]$ $1$