Properties

Label 6.6.1387029.1-27.1-o
Base field 6.6.1387029.1
Weight $[2, 2, 2, 2, 2, 2]$
Level norm $27$
Level $[27, 9, w^{5} - 2w^{4} - 3w^{3} + 5w^{2} - 2]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 6.6.1387029.1

Generator \(w\), with minimal polynomial \(x^{6} - 3x^{5} - 2x^{4} + 9x^{3} - x^{2} - 4x + 1\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2, 2, 2]$
Level: $[27, 9, w^{5} - 2w^{4} - 3w^{3} + 5w^{2} - 2]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $16$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, -w^{5} + 2w^{4} + 4w^{3} - 5w^{2} - 5w + 1]$ $\phantom{-}0$
7 $[7, 7, -w^{5} + 3w^{4} + 3w^{3} - 10w^{2} - 3w + 5]$ $-4$
25 $[25, 5, -w^{3} + 2w^{2} + 2w - 3]$ $\phantom{-}8$
37 $[37, 37, w^{3} - w^{2} - 4w + 2]$ $-7$
37 $[37, 37, w^{3} - 2w^{2} - 3w + 2]$ $\phantom{-}8$
49 $[49, 7, w^{5} - 2w^{4} - 5w^{3} + 8w^{2} + 5w - 3]$ $-13$
49 $[49, 7, -w^{5} + 3w^{4} + 3w^{3} - 9w^{2} - 3w + 4]$ $\phantom{-}5$
53 $[53, 53, w^{4} - 2w^{3} - 3w^{2} + 3w + 1]$ $\phantom{-}0$
53 $[53, 53, w^{4} - 2w^{3} - 3w^{2} + 5w]$ $-6$
61 $[61, 61, -3w^{5} + 6w^{4} + 12w^{3} - 16w^{2} - 12w + 5]$ $\phantom{-}8$
61 $[61, 61, 2w^{5} - 5w^{4} - 7w^{3} + 16w^{2} + 7w - 7]$ $-13$
61 $[61, 61, -2w^{5} + 5w^{4} + 7w^{3} - 15w^{2} - 8w + 6]$ $\phantom{-}2$
61 $[61, 61, -w^{3} + 2w^{2} + 4w - 3]$ $-13$
64 $[64, 2, -2]$ $-7$
67 $[67, 67, w^{5} - 3w^{4} - 3w^{3} + 10w^{2} + 2w - 3]$ $\phantom{-}14$
67 $[67, 67, -w^{5} + 2w^{4} + 4w^{3} - 6w^{2} - 4w + 5]$ $\phantom{-}2$
71 $[71, 71, w^{5} - 2w^{4} - 4w^{3} + 7w^{2} + 2w - 4]$ $-12$
71 $[71, 71, -w^{5} + 3w^{4} + 2w^{3} - 7w^{2} - w]$ $-6$
81 $[81, 3, -w^{4} + 2w^{3} + 2w^{2} - 3w + 2]$ $-2$
101 $[101, 101, w^{5} - 3w^{4} - 3w^{3} + 9w^{2} + 4w - 3]$ $-12$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$3$ $[3, 3, -w^{5} + 2w^{4} + 4w^{3} - 5w^{2} - 5w + 1]$ $-1$