/* This code can be loaded, or copied and pasted, into Magma. It will load the data associated to the HMF, including the field, level, and Hecke and Atkin-Lehner eigenvalue data. At the *bottom* of the file, there is code to recreate the Hilbert modular form in Magma, by creating the HMF space and cutting out the corresponding Hecke irreducible subspace. From there, you can ask for more eigenvalues or modify as desired. It is commented out, as this computation may be lengthy. */ P := PolynomialRing(Rationals()); g := P![-1, 1, 5, -3, -2, 1]; F := NumberField(g); ZF := Integers(F); NN := ideal; primesArray := [ [3, 3, w^4 - 2*w^3 - 3*w^2 + 4*w + 1], [13, 13, w^3 - 2*w^2 - 2*w + 2], [23, 23, 2*w^4 - 3*w^3 - 6*w^2 + 5*w + 1], [25, 5, -w^2 + 2*w + 2], [29, 29, -w^4 + w^3 + 4*w^2 - 3*w - 1], [31, 31, w^4 - w^3 - 5*w^2 + 2*w + 4], [32, 2, 2], [37, 37, w^4 - 2*w^3 - 2*w^2 + 4*w + 1], [47, 47, w^4 - w^3 - 5*w^2 + 2*w + 3], [47, 47, 2*w^4 - 3*w^3 - 6*w^2 + 6*w + 2], [49, 7, -w^4 + 2*w^3 + 4*w^2 - 6*w - 2], [53, 53, -2*w^4 + 3*w^3 + 7*w^2 - 7*w - 2], [59, 59, -2*w^4 + 3*w^3 + 6*w^2 - 5*w - 2], [67, 67, -w^4 + 3*w^3 + 2*w^2 - 7*w], [67, 67, -w^4 + 3*w^3 + w^2 - 7*w + 1], [71, 71, w^4 - 2*w^3 - 4*w^2 + 3*w + 3], [71, 71, -w^2 + 5], [79, 79, 2*w^4 - 3*w^3 - 5*w^2 + 3*w + 1], [81, 3, -w^4 + 3*w^3 + 3*w^2 - 8*w - 2], [83, 83, -3*w^4 + 3*w^3 + 10*w^2 - 2*w - 2], [89, 89, -w^4 + 2*w^3 + 3*w^2 - 6*w - 1], [101, 101, w^4 - w^3 - 4*w^2 + 3], [103, 103, w^4 - w^3 - 5*w^2 + 3*w + 1], [103, 103, 2*w^4 - 3*w^3 - 8*w^2 + 8*w + 3], [103, 103, -w^4 + 2*w^3 + 2*w^2 - 5*w + 4], [109, 109, -2*w^4 + 4*w^3 + 7*w^2 - 10*w - 4], [121, 11, w^4 - 3*w^3 - 2*w^2 + 7*w + 1], [125, 5, -2*w^4 + 2*w^3 + 7*w^2 - 3*w + 1], [127, 127, -2*w^3 + 2*w^2 + 7*w - 4], [149, 149, 2*w^4 - 5*w^3 - 4*w^2 + 11*w + 1], [157, 157, -2*w^4 + 2*w^3 + 9*w^2 - 5*w - 6], [163, 163, 2*w^4 - 2*w^3 - 6*w^2 + w - 1], [163, 163, 3*w^4 - 5*w^3 - 9*w^2 + 10*w + 4], [163, 163, -3*w^4 + 5*w^3 + 10*w^2 - 12*w - 3], [167, 167, w^4 - 2*w^3 - 2*w^2 + 4*w - 4], [173, 173, 2*w^4 - 3*w^3 - 6*w^2 + 7*w], [173, 173, 2*w^4 - 5*w^3 - 4*w^2 + 10*w], [179, 179, -w^4 + 3*w^3 + 2*w^2 - 6*w - 2], [181, 181, -w^4 + w^3 + 2*w^2 + w + 2], [181, 181, -2*w^4 + 3*w^3 + 7*w^2 - 4*w - 4], [193, 193, 2*w^4 - 4*w^3 - 5*w^2 + 8*w + 3], [197, 197, 2*w^4 - 2*w^3 - 9*w^2 + 3*w + 6], [199, 199, w^4 - 2*w^3 - w^2 + 3*w - 4], [211, 211, -w^4 + 6*w^2 + w - 3], [223, 223, 3*w^4 - 5*w^3 - 9*w^2 + 11*w + 1], [223, 223, -w^3 + w^2 + w - 3], [229, 229, 2*w^2 - w - 4], [241, 241, -w^4 + 6*w^2 - 6], [241, 241, -w^4 + 3*w^3 + 3*w^2 - 8*w], [257, 257, -2*w^3 + 2*w^2 + 5*w], [269, 269, 2*w^3 - w^2 - 5*w], [269, 269, 3*w^4 - 6*w^3 - 7*w^2 + 12*w], [277, 277, -w^4 + 3*w^3 + w^2 - 7*w], [277, 277, -w^3 - w^2 + 5*w + 4], [283, 283, -3*w^4 + 5*w^3 + 8*w^2 - 8*w - 1], [283, 283, 3*w^4 - 4*w^3 - 9*w^2 + 7*w + 1], [283, 283, 3*w^4 - 5*w^3 - 9*w^2 + 8*w + 4], [293, 293, 2*w^4 - 4*w^3 - 7*w^2 + 11*w + 2], [307, 307, -w^3 + 3*w^2 - 5], [311, 311, w^2 - 2*w - 4], [317, 317, w^4 - w^3 - 2*w^2 + w - 4], [317, 317, -w^3 + 6*w], [331, 331, -w^4 + w^3 + 2*w^2 - 2*w + 3], [343, 7, -2*w^3 + w^2 + 7*w - 1], [349, 349, 3*w^4 - 5*w^3 - 8*w^2 + 10*w], [349, 349, w^4 + w^3 - 6*w^2 - 4*w + 4], [353, 353, w^3 - 3*w - 4], [359, 359, 2*w^4 - 2*w^3 - 8*w^2 + w + 4], [367, 367, -5*w^4 + 8*w^3 + 17*w^2 - 18*w - 8], [367, 367, -w^4 + 4*w^3 - 9*w + 1], [373, 373, 3*w^4 - 6*w^3 - 8*w^2 + 12*w + 1], [379, 379, 4*w^4 - 7*w^3 - 12*w^2 + 15*w + 6], [379, 379, -w^4 - w^3 + 6*w^2 + 5*w], [379, 379, -3*w^4 + 4*w^3 + 9*w^2 - 6*w - 1], [421, 421, -3*w^4 + 4*w^3 + 11*w^2 - 7*w - 3], [433, 433, 2*w^4 - 5*w^3 - 5*w^2 + 10*w], [439, 439, -4*w^4 + 7*w^3 + 11*w^2 - 15*w - 1], [457, 457, -2*w^4 + 4*w^3 + 6*w^2 - 7*w - 2], [461, 461, w^3 - 2*w - 3], [463, 463, -3*w^4 + 5*w^3 + 10*w^2 - 11*w - 2], [463, 463, -2*w^4 + 2*w^3 + 8*w^2 - 2*w - 7], [467, 467, w^4 - 2*w^3 - 4*w^2 + 4*w + 6], [487, 487, w^2 - 3*w - 3], [487, 487, w^2 + w - 5], [491, 491, -3*w^4 + 6*w^3 + 8*w^2 - 12*w], [491, 491, -w^4 + 3*w^3 + 3*w^2 - 9*w - 1], [503, 503, -w^4 + 7*w^2 - 7], [503, 503, -w^4 + 2*w^3 + 3*w^2 - 5*w + 3], [509, 509, -2*w^4 + 4*w^3 + 7*w^2 - 7*w - 3], [521, 521, -w^4 + w^3 + 6*w^2 - 2*w - 5], [541, 541, -w^4 + 2*w^3 + 3*w^2 - 4*w - 5], [541, 541, -3*w^4 + 5*w^3 + 10*w^2 - 10*w - 2], [541, 541, -w^4 + 3*w^2 + 5*w - 1], [547, 547, -3*w^4 + 5*w^3 + 10*w^2 - 9*w - 4], [557, 557, 5*w^4 - 5*w^3 - 18*w^2 + 6*w + 3], [557, 557, w^4 - 2*w^2 - 2*w - 2], [563, 563, -2*w^4 + 4*w^3 + 5*w^2 - 6*w], [563, 563, 3*w^4 - 4*w^3 - 10*w^2 + 8*w + 1], [587, 587, -w^4 + 5*w^2 + 2*w - 6], [599, 599, 3*w^4 - 4*w^3 - 11*w^2 + 9*w + 3], [599, 599, 3*w^3 - 3*w^2 - 9*w + 1], [601, 601, -w^4 + 3*w^3 + w^2 - 8*w], [607, 607, 4*w^4 - 8*w^3 - 12*w^2 + 17*w + 6], [607, 607, w^4 + 2*w^3 - 7*w^2 - 6*w + 3], [613, 613, -3*w^4 + 4*w^3 + 9*w^2 - 7*w - 2], [617, 617, 2*w^3 - 4*w^2 - 5*w + 2], [619, 619, -w^4 + w^3 + 2*w^2 + 3*w + 2], [641, 641, -2*w^4 + 4*w^3 + 6*w^2 - 11*w - 3], [641, 641, -2*w^4 + 5*w^3 + 5*w^2 - 11*w - 2], [643, 643, -3*w^4 + 6*w^3 + 7*w^2 - 10*w + 3], [653, 653, -4*w^4 + 6*w^3 + 15*w^2 - 15*w - 6], [659, 659, 2*w^4 - w^3 - 9*w^2 + w + 5], [659, 659, -w^4 + w^3 + w^2 + 2*w + 2], [659, 659, -2*w^4 + 4*w^3 + 5*w^2 - 9*w - 3], [673, 673, 2*w^4 + w^3 - 10*w^2 - 7*w + 3], [677, 677, -3*w^4 + w^3 + 14*w^2 + 3*w - 5], [677, 677, -3*w^4 + 4*w^3 + 8*w^2 - 4*w - 1], [677, 677, -2*w^4 + 2*w^3 + 6*w^2 + w + 1], [683, 683, -4*w^4 + 7*w^3 + 12*w^2 - 15*w], [691, 691, -3*w^4 + 4*w^3 + 9*w^2 - 4*w + 1], [691, 691, 3*w^4 - 5*w^3 - 8*w^2 + 9*w + 1], [709, 709, -w^4 + 4*w^3 - 8*w - 1], [733, 733, 4*w^4 - 6*w^3 - 13*w^2 + 10*w + 2], [743, 743, 2*w^4 - 5*w^3 - 4*w^2 + 14*w - 3], [751, 751, -w^4 - 2*w^3 + 7*w^2 + 6*w - 4], [757, 757, 3*w^3 - 2*w^2 - 9*w + 1], [761, 761, 4*w^4 - 5*w^3 - 14*w^2 + 9*w + 3], [761, 761, 5*w^4 - 8*w^3 - 16*w^2 + 15*w + 8], [761, 761, w^4 - 2*w^3 - 2*w^2 + 2*w - 3], [769, 769, 3*w^3 - 4*w^2 - 8*w + 7], [769, 769, 3*w^4 - 5*w^3 - 11*w^2 + 12*w + 4], [769, 769, -2*w^3 + 3*w^2 + 6*w - 1], [773, 773, 3*w^4 - 3*w^3 - 12*w^2 + 7*w + 8], [773, 773, -2*w^4 + 6*w^3 + 3*w^2 - 14*w + 2], [773, 773, -2*w^4 + w^3 + 9*w^2 - w - 6], [787, 787, w^4 - 4*w^2 - 2*w + 6], [809, 809, -2*w^4 + 2*w^3 + 8*w^2 - w - 6], [809, 809, -2*w^4 + 3*w^3 + 9*w^2 - 5*w - 8], [821, 821, -2*w^4 + 9*w^2 + 3*w + 1], [821, 821, w^4 - 4*w^2 - 3*w + 4], [829, 829, -w^4 + 3*w^3 - 4*w + 4], [853, 853, -3*w^4 + 5*w^3 + 8*w^2 - 9*w - 2], [859, 859, 2*w^4 - 2*w^3 - 6*w^2 - 3], [863, 863, 5*w^4 - 9*w^3 - 14*w^2 + 17*w + 3], [863, 863, 2*w^4 - 4*w^3 - 7*w^2 + 12*w + 6], [863, 863, 2*w^4 - 2*w^3 - 11*w^2 + 6*w + 9], [877, 877, -2*w^4 + 3*w^3 + 8*w^2 - 7*w - 2], [877, 877, 3*w^4 - 6*w^3 - 6*w^2 + 13*w - 1], [877, 877, w^4 + w^3 - 4*w^2 - 8*w], [881, 881, -w^4 - w^3 + 7*w^2 + 2*w - 4], [883, 883, 4*w^4 - 4*w^3 - 16*w^2 + 7*w + 8], [887, 887, -2*w^4 + 3*w^3 + 10*w^2 - 8*w - 9], [929, 929, -w^3 + 2*w^2 - 4], [929, 929, -3*w^4 + 6*w^3 + 9*w^2 - 14*w], [929, 929, -4*w^4 + 7*w^3 + 11*w^2 - 14*w - 4], [937, 937, 2*w^4 - 2*w^3 - 5*w^2 - w - 2], [941, 941, -3*w^4 + 3*w^3 + 13*w^2 - 8*w - 8], [941, 941, w^4 - w^3 - 3*w^2 + 3*w - 3], [947, 947, -3*w^4 + 6*w^3 + 10*w^2 - 16*w - 3], [961, 31, -w^4 + 5*w^3 - 14*w], [961, 31, -w^4 - w^3 + 8*w^2 + 2*w - 4], [971, 971, -2*w^4 + 3*w^3 + 4*w^2 - 3*w + 2], [983, 983, 4*w^4 - 7*w^3 - 11*w^2 + 16*w], [983, 983, -3*w^4 + 2*w^3 + 12*w^2], [997, 997, 3*w^4 - 4*w^3 - 8*w^2 + 5*w - 2], [997, 997, w^4 - 3*w^3 - w^2 + 3*w - 2], [997, 997, -4*w^4 + 5*w^3 + 13*w^2 - 9*w - 2]]; primes := [ideal : I in primesArray]; heckePol := x; K := Rationals(); e := 1; heckeEigenvaluesArray := [0, -6, 0, -2, -2, 8, -3, -6, 8, -4, -1, -6, -12, 8, -12, -12, 0, 8, 2, 4, 14, -10, 0, 8, -8, -2, 2, -14, -8, -6, -18, 8, -20, -8, 12, -14, 14, -4, 22, -2, -2, -22, -24, -20, 24, -20, -10, 2, 14, 6, 10, -30, 2, -22, 12, 0, -28, 26, -32, 0, 26, -14, 20, -24, -2, -10, -18, 32, 12, -12, 10, -4, 12, -16, -2, -2, -32, 14, -2, -8, -16, 16, 24, -16, -28, 16, 16, 16, -30, 6, -6, 26, -30, -12, 42, 18, -20, 12, 12, 32, -24, 14, -8, 12, 38, -18, -40, 18, 2, 36, -42, -12, 12, -12, -6, 18, -14, 30, -8, 28, 4, 22, 34, -8, -32, -26, -10, 38, -6, -14, -46, -50, -6, 22, 46, -36, -6, 6, -6, 22, 2, -42, 24, 40, -24, -20, -38, 42, 2, 42, 56, -8, -50, -54, 42, 22, 54, 38, -16, 10, 2, -4, 24, 16, -26, 46, -38]; heckeEigenvalues := AssociativeArray(); for i := 1 to #heckeEigenvaluesArray do heckeEigenvalues[primes[i]] := heckeEigenvaluesArray[i]; end for; ALEigenvalues := AssociativeArray(); ALEigenvalues[ideal] := 1; // EXAMPLE: // pp := Factorization(2*ZF)[1][1]; // heckeEigenvalues[pp]; /* EXTRA CODE: recompute eigenform (warning, may take a few minutes or longer!): M := HilbertCuspForms(F, NN); S := NewSubspace(M); // SetVerbose("ModFrmHil", 1); newspaces := NewformDecomposition(S); newforms := [Eigenform(U) : U in newspaces]; ppind := 0; while #newforms gt 1 do pp := primes[ppind]; newforms := [f : f in newforms | HeckeEigenvalue(f,pp) eq heckeEigenvalues[pp]]; end while; f := newforms[1]; // [HeckeEigenvalue(f,pp) : pp in primes] eq heckeEigenvaluesArray; */