/* This code can be loaded, or copied and pasted, into Magma. It will load the data associated to the HMF, including the field, level, and Hecke and Atkin-Lehner eigenvalue data. At the *bottom* of the file, there is code to recreate the Hilbert modular form in Magma, by creating the HMF space and cutting out the corresponding Hecke irreducible subspace. From there, you can ask for more eigenvalues or modify as desired. It is commented out, as this computation may be lengthy. */ P := PolynomialRing(Rationals()); g := P![-1, 1, 5, -3, -2, 1]; F := NumberField(g); ZF := Integers(F); NN := ideal; primesArray := [ [3, 3, w^4 - 2*w^3 - 3*w^2 + 4*w + 1], [13, 13, w^3 - 2*w^2 - 2*w + 2], [23, 23, 2*w^4 - 3*w^3 - 6*w^2 + 5*w + 1], [25, 5, -w^2 + 2*w + 2], [29, 29, -w^4 + w^3 + 4*w^2 - 3*w - 1], [31, 31, w^4 - w^3 - 5*w^2 + 2*w + 4], [32, 2, 2], [37, 37, w^4 - 2*w^3 - 2*w^2 + 4*w + 1], [47, 47, w^4 - w^3 - 5*w^2 + 2*w + 3], [47, 47, 2*w^4 - 3*w^3 - 6*w^2 + 6*w + 2], [49, 7, -w^4 + 2*w^3 + 4*w^2 - 6*w - 2], [53, 53, -2*w^4 + 3*w^3 + 7*w^2 - 7*w - 2], [59, 59, -2*w^4 + 3*w^3 + 6*w^2 - 5*w - 2], [67, 67, -w^4 + 3*w^3 + 2*w^2 - 7*w], [67, 67, -w^4 + 3*w^3 + w^2 - 7*w + 1], [71, 71, w^4 - 2*w^3 - 4*w^2 + 3*w + 3], [71, 71, -w^2 + 5], [79, 79, 2*w^4 - 3*w^3 - 5*w^2 + 3*w + 1], [81, 3, -w^4 + 3*w^3 + 3*w^2 - 8*w - 2], [83, 83, -3*w^4 + 3*w^3 + 10*w^2 - 2*w - 2], [89, 89, -w^4 + 2*w^3 + 3*w^2 - 6*w - 1], [101, 101, w^4 - w^3 - 4*w^2 + 3], [103, 103, w^4 - w^3 - 5*w^2 + 3*w + 1], [103, 103, 2*w^4 - 3*w^3 - 8*w^2 + 8*w + 3], [103, 103, -w^4 + 2*w^3 + 2*w^2 - 5*w + 4], [109, 109, -2*w^4 + 4*w^3 + 7*w^2 - 10*w - 4], [121, 11, w^4 - 3*w^3 - 2*w^2 + 7*w + 1], [125, 5, -2*w^4 + 2*w^3 + 7*w^2 - 3*w + 1], [127, 127, -2*w^3 + 2*w^2 + 7*w - 4], [149, 149, 2*w^4 - 5*w^3 - 4*w^2 + 11*w + 1], [157, 157, -2*w^4 + 2*w^3 + 9*w^2 - 5*w - 6], [163, 163, 2*w^4 - 2*w^3 - 6*w^2 + w - 1], [163, 163, 3*w^4 - 5*w^3 - 9*w^2 + 10*w + 4], [163, 163, -3*w^4 + 5*w^3 + 10*w^2 - 12*w - 3], [167, 167, w^4 - 2*w^3 - 2*w^2 + 4*w - 4], [173, 173, 2*w^4 - 3*w^3 - 6*w^2 + 7*w], [173, 173, 2*w^4 - 5*w^3 - 4*w^2 + 10*w], [179, 179, -w^4 + 3*w^3 + 2*w^2 - 6*w - 2], [181, 181, -w^4 + w^3 + 2*w^2 + w + 2], [181, 181, -2*w^4 + 3*w^3 + 7*w^2 - 4*w - 4], [193, 193, 2*w^4 - 4*w^3 - 5*w^2 + 8*w + 3], [197, 197, 2*w^4 - 2*w^3 - 9*w^2 + 3*w + 6], [199, 199, w^4 - 2*w^3 - w^2 + 3*w - 4], [211, 211, -w^4 + 6*w^2 + w - 3], [223, 223, 3*w^4 - 5*w^3 - 9*w^2 + 11*w + 1], [223, 223, -w^3 + w^2 + w - 3], [229, 229, 2*w^2 - w - 4], [241, 241, -w^4 + 6*w^2 - 6], [241, 241, -w^4 + 3*w^3 + 3*w^2 - 8*w], [257, 257, -2*w^3 + 2*w^2 + 5*w], [269, 269, 2*w^3 - w^2 - 5*w], [269, 269, 3*w^4 - 6*w^3 - 7*w^2 + 12*w], [277, 277, -w^4 + 3*w^3 + w^2 - 7*w], [277, 277, -w^3 - w^2 + 5*w + 4], [283, 283, -3*w^4 + 5*w^3 + 8*w^2 - 8*w - 1], [283, 283, 3*w^4 - 4*w^3 - 9*w^2 + 7*w + 1], [283, 283, 3*w^4 - 5*w^3 - 9*w^2 + 8*w + 4], [293, 293, 2*w^4 - 4*w^3 - 7*w^2 + 11*w + 2], [307, 307, -w^3 + 3*w^2 - 5], [311, 311, w^2 - 2*w - 4], [317, 317, w^4 - w^3 - 2*w^2 + w - 4], [317, 317, -w^3 + 6*w], [331, 331, -w^4 + w^3 + 2*w^2 - 2*w + 3], [343, 7, -2*w^3 + w^2 + 7*w - 1], [349, 349, 3*w^4 - 5*w^3 - 8*w^2 + 10*w], [349, 349, w^4 + w^3 - 6*w^2 - 4*w + 4], [353, 353, w^3 - 3*w - 4], [359, 359, 2*w^4 - 2*w^3 - 8*w^2 + w + 4], [367, 367, -5*w^4 + 8*w^3 + 17*w^2 - 18*w - 8], [367, 367, -w^4 + 4*w^3 - 9*w + 1], [373, 373, 3*w^4 - 6*w^3 - 8*w^2 + 12*w + 1], [379, 379, 4*w^4 - 7*w^3 - 12*w^2 + 15*w + 6], [379, 379, -w^4 - w^3 + 6*w^2 + 5*w], [379, 379, -3*w^4 + 4*w^3 + 9*w^2 - 6*w - 1], [421, 421, -3*w^4 + 4*w^3 + 11*w^2 - 7*w - 3], [433, 433, 2*w^4 - 5*w^3 - 5*w^2 + 10*w], [439, 439, -4*w^4 + 7*w^3 + 11*w^2 - 15*w - 1], [457, 457, -2*w^4 + 4*w^3 + 6*w^2 - 7*w - 2], [461, 461, w^3 - 2*w - 3], [463, 463, -3*w^4 + 5*w^3 + 10*w^2 - 11*w - 2], [463, 463, -2*w^4 + 2*w^3 + 8*w^2 - 2*w - 7], [467, 467, w^4 - 2*w^3 - 4*w^2 + 4*w + 6], [487, 487, w^2 - 3*w - 3], [487, 487, w^2 + w - 5], [491, 491, -3*w^4 + 6*w^3 + 8*w^2 - 12*w], [491, 491, -w^4 + 3*w^3 + 3*w^2 - 9*w - 1], [503, 503, -w^4 + 7*w^2 - 7], [503, 503, -w^4 + 2*w^3 + 3*w^2 - 5*w + 3], [509, 509, -2*w^4 + 4*w^3 + 7*w^2 - 7*w - 3], [521, 521, -w^4 + w^3 + 6*w^2 - 2*w - 5], [541, 541, -w^4 + 2*w^3 + 3*w^2 - 4*w - 5], [541, 541, -3*w^4 + 5*w^3 + 10*w^2 - 10*w - 2], [541, 541, -w^4 + 3*w^2 + 5*w - 1], [547, 547, -3*w^4 + 5*w^3 + 10*w^2 - 9*w - 4], [557, 557, 5*w^4 - 5*w^3 - 18*w^2 + 6*w + 3], [557, 557, w^4 - 2*w^2 - 2*w - 2], [563, 563, -2*w^4 + 4*w^3 + 5*w^2 - 6*w], [563, 563, 3*w^4 - 4*w^3 - 10*w^2 + 8*w + 1], [587, 587, -w^4 + 5*w^2 + 2*w - 6], [599, 599, 3*w^4 - 4*w^3 - 11*w^2 + 9*w + 3], [599, 599, 3*w^3 - 3*w^2 - 9*w + 1], [601, 601, -w^4 + 3*w^3 + w^2 - 8*w], [607, 607, 4*w^4 - 8*w^3 - 12*w^2 + 17*w + 6], [607, 607, w^4 + 2*w^3 - 7*w^2 - 6*w + 3], [613, 613, -3*w^4 + 4*w^3 + 9*w^2 - 7*w - 2], [617, 617, 2*w^3 - 4*w^2 - 5*w + 2], [619, 619, -w^4 + w^3 + 2*w^2 + 3*w + 2], [641, 641, -2*w^4 + 4*w^3 + 6*w^2 - 11*w - 3], [641, 641, -2*w^4 + 5*w^3 + 5*w^2 - 11*w - 2], [643, 643, -3*w^4 + 6*w^3 + 7*w^2 - 10*w + 3], [653, 653, -4*w^4 + 6*w^3 + 15*w^2 - 15*w - 6], [659, 659, 2*w^4 - w^3 - 9*w^2 + w + 5], [659, 659, -w^4 + w^3 + w^2 + 2*w + 2], [659, 659, -2*w^4 + 4*w^3 + 5*w^2 - 9*w - 3], [673, 673, 2*w^4 + w^3 - 10*w^2 - 7*w + 3], [677, 677, -3*w^4 + w^3 + 14*w^2 + 3*w - 5], [677, 677, -3*w^4 + 4*w^3 + 8*w^2 - 4*w - 1], [677, 677, -2*w^4 + 2*w^3 + 6*w^2 + w + 1], [683, 683, -4*w^4 + 7*w^3 + 12*w^2 - 15*w], [691, 691, -3*w^4 + 4*w^3 + 9*w^2 - 4*w + 1], [691, 691, 3*w^4 - 5*w^3 - 8*w^2 + 9*w + 1], [709, 709, -w^4 + 4*w^3 - 8*w - 1], [733, 733, 4*w^4 - 6*w^3 - 13*w^2 + 10*w + 2], [743, 743, 2*w^4 - 5*w^3 - 4*w^2 + 14*w - 3], [751, 751, -w^4 - 2*w^3 + 7*w^2 + 6*w - 4], [757, 757, 3*w^3 - 2*w^2 - 9*w + 1], [761, 761, 4*w^4 - 5*w^3 - 14*w^2 + 9*w + 3], [761, 761, 5*w^4 - 8*w^3 - 16*w^2 + 15*w + 8], [761, 761, w^4 - 2*w^3 - 2*w^2 + 2*w - 3], [769, 769, 3*w^3 - 4*w^2 - 8*w + 7], [769, 769, 3*w^4 - 5*w^3 - 11*w^2 + 12*w + 4], [769, 769, -2*w^3 + 3*w^2 + 6*w - 1], [773, 773, 3*w^4 - 3*w^3 - 12*w^2 + 7*w + 8], [773, 773, -2*w^4 + 6*w^3 + 3*w^2 - 14*w + 2], [773, 773, -2*w^4 + w^3 + 9*w^2 - w - 6], [787, 787, w^4 - 4*w^2 - 2*w + 6], [809, 809, -2*w^4 + 2*w^3 + 8*w^2 - w - 6], [809, 809, -2*w^4 + 3*w^3 + 9*w^2 - 5*w - 8], [821, 821, -2*w^4 + 9*w^2 + 3*w + 1], [821, 821, w^4 - 4*w^2 - 3*w + 4], [829, 829, -w^4 + 3*w^3 - 4*w + 4], [853, 853, -3*w^4 + 5*w^3 + 8*w^2 - 9*w - 2], [859, 859, 2*w^4 - 2*w^3 - 6*w^2 - 3], [863, 863, 5*w^4 - 9*w^3 - 14*w^2 + 17*w + 3], [863, 863, 2*w^4 - 4*w^3 - 7*w^2 + 12*w + 6], [863, 863, 2*w^4 - 2*w^3 - 11*w^2 + 6*w + 9], [877, 877, -2*w^4 + 3*w^3 + 8*w^2 - 7*w - 2], [877, 877, 3*w^4 - 6*w^3 - 6*w^2 + 13*w - 1], [877, 877, w^4 + w^3 - 4*w^2 - 8*w], [881, 881, -w^4 - w^3 + 7*w^2 + 2*w - 4], [883, 883, 4*w^4 - 4*w^3 - 16*w^2 + 7*w + 8], [887, 887, -2*w^4 + 3*w^3 + 10*w^2 - 8*w - 9], [929, 929, -w^3 + 2*w^2 - 4], [929, 929, -3*w^4 + 6*w^3 + 9*w^2 - 14*w], [929, 929, -4*w^4 + 7*w^3 + 11*w^2 - 14*w - 4], [937, 937, 2*w^4 - 2*w^3 - 5*w^2 - w - 2], [941, 941, -3*w^4 + 3*w^3 + 13*w^2 - 8*w - 8], [941, 941, w^4 - w^3 - 3*w^2 + 3*w - 3], [947, 947, -3*w^4 + 6*w^3 + 10*w^2 - 16*w - 3], [961, 31, -w^4 + 5*w^3 - 14*w], [961, 31, -w^4 - w^3 + 8*w^2 + 2*w - 4], [971, 971, -2*w^4 + 3*w^3 + 4*w^2 - 3*w + 2], [983, 983, 4*w^4 - 7*w^3 - 11*w^2 + 16*w], [983, 983, -3*w^4 + 2*w^3 + 12*w^2], [997, 997, 3*w^4 - 4*w^3 - 8*w^2 + 5*w - 2], [997, 997, w^4 - 3*w^3 - w^2 + 3*w - 2], [997, 997, -4*w^4 + 5*w^3 + 13*w^2 - 9*w - 2]]; primes := [ideal : I in primesArray]; heckePol := x^6 - 14*x^4 + 46*x^2 - 8; K := NumberField(heckePol); heckeEigenvaluesArray := [e, -1/4*e^5 + 5/2*e^3 - 7/2*e, 1/2*e^4 - 5*e^2 + 7, -e^3 + 7*e, -1/2*e^5 + 7*e^3 - 23*e, 1/2*e^5 - 7*e^3 + 23*e, 1, -1/2*e^5 + 7*e^3 - 21*e, 1/4*e^5 - 5/2*e^3 + 7/2*e, 1/2*e^4 - 3*e^2 - 1, -1/4*e^5 + 7/2*e^3 - 21/2*e, -2*e, -2, -1/2*e^4 + 2*e^2 + 9, 1/2*e^5 - 6*e^3 + 16*e, e^4 - 8*e^2 + 6, 3/4*e^5 - 19/2*e^3 + 49/2*e, -e^4 + 10*e^2 - 10, 1/2*e^5 - 7*e^3 + 20*e, 1/2*e^4 - 5*e^2 + 5, -3*e^2 + 14, -1/2*e^4 + 5*e^2 - 5, -2*e^2 + 12, -1/2*e^4 + 5*e^2 - 3, 1/2*e^5 - 5*e^3 + 9*e, e^5 - 14*e^3 + 42*e, -e^4 + 8*e^2 + 2, 2*e^3 - 16*e, -1/4*e^5 + 1/2*e^3 + 21/2*e, 3/4*e^5 - 19/2*e^3 + 57/2*e, 1/2*e^4 - 5*e^2 + 17, 1/2*e^4 - 4*e^2 + 7, e^4 - 11*e^2 + 22, -1/2*e^5 + 6*e^3 - 20*e, 3/2*e^4 - 17*e^2 + 25, -5/4*e^5 + 33/2*e^3 - 111/2*e, 4*e^2 - 14, -e^4 + 9*e^2 - 18, -1/2*e^4 + e^2 + 15, -e^4 + 8*e^2, -3/2*e^5 + 20*e^3 - 58*e, -1/2*e^5 + 5*e^3 - 11*e, 1/2*e^4 - e^2 - 5, 7/4*e^5 - 43/2*e^3 + 115/2*e, -5/4*e^5 + 37/2*e^3 - 119/2*e, -1/2*e^5 + 7*e^3 - 21*e, -e^4 + 12*e^2 - 16, -e^4 + 13*e^2 - 20, -3/4*e^5 + 19/2*e^3 - 47/2*e, e^2 - 6, 2*e^2 - 10, 2*e^2 - 10, 1/2*e^5 - 9*e^3 + 39*e, -e^4 + 6*e^2 + 4, 1/2*e^4 - 4*e^2 + 3, 1/2*e^4 - 4*e^2 + 3, -e^5 + 16*e^3 - 53*e, -1/2*e^5 + 7*e^3 - 19*e, e^5 - 14*e^3 + 45*e, -5/4*e^5 + 29/2*e^3 - 71/2*e, 1/2*e^5 - 7*e^3 + 17*e, e^4 - 8*e^2 + 4, -2*e^5 + 26*e^3 - 69*e, 2*e^5 - 28*e^3 + 84*e, -1/2*e^4 + 5*e^2 - 5, -3/2*e^4 + 7*e^2 + 33, 3/2*e^5 - 21*e^3 + 56*e, -2*e^4 + 18*e^2 - 36, 7/4*e^5 - 47/2*e^3 + 133/2*e, e^4 - 14*e^2 + 26, -e^5 + 18*e^3 - 78*e, e^5 - 12*e^3 + 31*e, -3/4*e^5 + 15/2*e^3 - 7/2*e, e^2 - 8, -1/2*e^4 + e^2 + 7, -5/4*e^5 + 33/2*e^3 - 105/2*e, -1/2*e^4 + 3*e^2 - 7, 5/4*e^5 - 31/2*e^3 + 85/2*e, 1/2*e^5 - 11*e^3 + 55*e, 5/2*e^4 - 27*e^2 + 39, 9/4*e^5 - 57/2*e^3 + 147/2*e, -1/4*e^5 + 7/2*e^3 - 29/2*e, 1/2*e^5 - e^3 - 21*e, -e^5 + 16*e^3 - 64*e, -7*e^3 + 49*e, -5/4*e^5 + 41/2*e^3 - 173/2*e, 11/4*e^5 - 71/2*e^3 + 197/2*e, e^4 - 2*e^2 - 30, -2*e^3 + 20*e, 5/2*e^5 - 32*e^3 + 80*e, 2*e^4 - 24*e^2 + 42, -1/2*e^4 + e^2 + 3, -9/4*e^5 + 57/2*e^3 - 171/2*e, 3/4*e^5 - 19/2*e^3 + 39/2*e, -1/2*e^5 + e^3 + 19*e, -1/2*e^4 + e^2 + 19, -7/4*e^5 + 45/2*e^3 - 131/2*e, e^5 - 7*e^3 - 3*e, -3/2*e^5 + 20*e^3 - 68*e, -3/2*e^5 + 19*e^3 - 49*e, -20, 3/2*e^5 - 16*e^3 + 38*e, 10*e^2 - 48, e^4 - 4*e^2 - 18, e^4 - 14*e^2 + 24, -3/4*e^5 + 15/2*e^3 - 43/2*e, -3/4*e^5 + 17/2*e^3 - 43/2*e, 2*e^4 - 15*e^2 - 2, 3*e^4 - 24*e^2 + 10, -2*e^5 + 22*e^3 - 51*e, 4*e^3 - 40*e, -e^4 + 9*e^2 - 34, 5*e^2 - 40, e^5 - 11*e^3 + 23*e, -3/2*e^4 + 14*e^2 - 3, -1/2*e^5 + 5*e^3 - 15*e, -e^4 + 8*e^2, -5/4*e^5 + 45/2*e^3 - 175/2*e, e^4 - 9*e^2 + 14, 1/4*e^5 - 9/2*e^3 + 21/2*e, 10, -e^4 + 10*e^2, 4*e^3 - 20*e, 0, -2*e^4 + 16*e^2 + 16, -2*e^4 + 16*e^2 + 22, 5/2*e^5 - 33*e^3 + 94*e, -e^4 + 12*e^2 - 42, e^5 - 18*e^3 + 83*e, -3*e^4 + 23*e^2 - 8, 5/2*e^4 - 22*e^2 + 17, 2*e^5 - 27*e^3 + 97*e, -8*e^2 + 34, 3*e^4 - 28*e^2 + 20, -1/2*e^4 + 11*e^2 - 49, 3*e^5 - 38*e^3 + 99*e, 4*e^4 - 34*e^2 + 20, -3/2*e^4 + 16*e^2 - 23, 9/4*e^5 - 53/2*e^3 + 107/2*e, 4*e, -3/4*e^5 + 39/2*e^3 - 197/2*e, -3*e^4 + 30*e^2 - 36, -e^5 + 14*e^3 - 63*e, 4*e^3 - 34*e, -3/2*e^4 + 11*e^2 - 13, -e^5 + 12*e^3 - 30*e, -2*e^4 + 18*e^2 - 14, e^5 - 6*e^3 - 18*e, 18*e, e^4 - 13*e^2 + 28, -3*e^4 + 26*e^2 - 4, 3/2*e^4 - 17*e^2 + 1, -7/2*e^5 + 45*e^3 - 134*e, 5*e^2 - 18, -3*e^4 + 20*e^2 + 14, 3/2*e^4 - 15*e^2 + 19, -2*e^4 + 22*e^2 - 14, 5/2*e^5 - 37*e^3 + 141*e, 3*e^5 - 35*e^3 + 91*e, -5/2*e^4 + 27*e^2 - 39, 3*e^5 - 42*e^3 + 129*e, -7/2*e^4 + 36*e^2 - 41, -3/4*e^5 + 23/2*e^3 - 81/2*e, 2*e^2 - 40, 10*e^2 - 30, -3/4*e^5 + 19/2*e^3 - 41/2*e, 9/4*e^5 - 57/2*e^3 + 135/2*e]; heckeEigenvalues := AssociativeArray(); for i := 1 to #heckeEigenvaluesArray do heckeEigenvalues[primes[i]] := heckeEigenvaluesArray[i]; end for; ALEigenvalues := AssociativeArray(); ALEigenvalues[ideal] := -1; // EXAMPLE: // pp := Factorization(2*ZF)[1][1]; // heckeEigenvalues[pp]; print "To reconstruct the Hilbert newform f, type f, iso := Explode(make_newform());"; function make_newform(); M := HilbertCuspForms(F, NN); S := NewSubspace(M); // SetVerbose("ModFrmHil", 1); NFD := NewformDecomposition(S); newforms := [* Eigenform(U) : U in NFD *]; if #newforms eq 0 then; print "No Hilbert newforms at this level"; return 0; end if; print "Testing ", #newforms, " possible newforms"; newforms := [* f: f in newforms | IsIsomorphic(BaseField(f), K) *]; print #newforms, " newforms have the correct Hecke field"; if #newforms eq 0 then; print "No Hilbert newform found with the correct Hecke field"; return 0; end if; autos := Automorphisms(K); xnewforms := [* *]; for f in newforms do; if K eq RationalField() then; Append(~xnewforms, [* f, autos[1] *]); else; flag, iso := IsIsomorphic(K,BaseField(f)); for a in autos do; Append(~xnewforms, [* f, a*iso *]); end for; end if; end for; newforms := xnewforms; for P in primes do; xnewforms := [* *]; for f_iso in newforms do; f, iso := Explode(f_iso); if HeckeEigenvalue(f,P) eq iso(heckeEigenvalues[P]) then; Append(~xnewforms, f_iso); end if; end for; newforms := xnewforms; if #newforms eq 0 then; print "No Hilbert newform found which matches the Hecke eigenvalues"; return 0; else if #newforms eq 1 then; print "success: unique match"; return newforms[1]; end if; end if; end for; print #newforms, "Hilbert newforms found which match the Hecke eigenvalues"; return newforms[1]; end function;