Base field 5.5.24217.1
Generator \(w\), with minimal polynomial \(x^{5} - 5x^{3} - x^{2} + 3x + 1\); narrow class number \(1\) and class number \(1\).
Form
Weight: | $[2, 2, 2, 2, 2]$ |
Level: | $[61, 61, 4w^{4} - 2w^{3} - 18w^{2} + 5w + 7]$ |
Dimension: | $1$ |
CM: | no |
Base change: | no |
Newspace dimension: | $4$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
5 | $[5, 5, -2w^{4} + w^{3} + 9w^{2} - 2w - 3]$ | $-2$ |
17 | $[17, 17, -2w^{4} + w^{3} + 9w^{2} - 3w - 5]$ | $\phantom{-}0$ |
17 | $[17, 17, w^{2} - 2]$ | $-4$ |
23 | $[23, 23, w^{3} - 3w]$ | $\phantom{-}6$ |
29 | $[29, 29, 2w^{4} - w^{3} - 10w^{2} + 2w + 4]$ | $-5$ |
32 | $[32, 2, 2]$ | $\phantom{-}5$ |
37 | $[37, 37, -w^{4} + w^{3} + 4w^{2} - 2w]$ | $\phantom{-}7$ |
41 | $[41, 41, -3w^{4} + 2w^{3} + 14w^{2} - 5w - 7]$ | $\phantom{-}2$ |
43 | $[43, 43, -3w^{4} + w^{3} + 14w^{2} - 3w - 6]$ | $-5$ |
47 | $[47, 47, -3w^{4} + 2w^{3} + 14w^{2} - 7w - 6]$ | $\phantom{-}9$ |
53 | $[53, 53, 2w^{4} - w^{3} - 8w^{2} + 2w + 1]$ | $-2$ |
53 | $[53, 53, -2w^{4} + w^{3} + 10w^{2} - 4w - 6]$ | $\phantom{-}6$ |
59 | $[59, 59, -w^{4} + 4w^{2} + 1]$ | $\phantom{-}5$ |
59 | $[59, 59, -3w^{4} + 2w^{3} + 14w^{2} - 6w - 8]$ | $-10$ |
61 | $[61, 61, 4w^{4} - 2w^{3} - 18w^{2} + 5w + 7]$ | $\phantom{-}1$ |
61 | $[61, 61, 3w^{4} - w^{3} - 15w^{2} + 2w + 7]$ | $\phantom{-}6$ |
73 | $[73, 73, -4w^{4} + 2w^{3} + 18w^{2} - 7w - 6]$ | $\phantom{-}1$ |
83 | $[83, 83, -2w^{4} + 9w^{2} + 2w - 4]$ | $\phantom{-}6$ |
83 | $[83, 83, -2w^{4} + 2w^{3} + 10w^{2} - 7w - 6]$ | $-9$ |
97 | $[97, 97, -2w^{4} + w^{3} + 8w^{2} - 3w + 1]$ | $\phantom{-}8$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$61$ | $[61, 61, 4w^{4} - 2w^{3} - 18w^{2} + 5w + 7]$ | $-1$ |