Properties

Label 5.5.24217.1-59.2-a
Base field 5.5.24217.1
Weight $[2, 2, 2, 2, 2]$
Level norm $59$
Level $[59, 59, -3w^{4} + 2w^{3} + 14w^{2} - 6w - 8]$
Dimension $2$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 5.5.24217.1

Generator \(w\), with minimal polynomial \(x^{5} - 5x^{3} - x^{2} + 3x + 1\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2, 2]$
Level: $[59, 59, -3w^{4} + 2w^{3} + 14w^{2} - 6w - 8]$
Dimension: $2$
CM: no
Base change: no
Newspace dimension: $6$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{2} + 4x + 1\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
5 $[5, 5, -2w^{4} + w^{3} + 9w^{2} - 2w - 3]$ $\phantom{-}e$
17 $[17, 17, -2w^{4} + w^{3} + 9w^{2} - 3w - 5]$ $\phantom{-}e - 2$
17 $[17, 17, w^{2} - 2]$ $-2e - 7$
23 $[23, 23, w^{3} - 3w]$ $-3e - 9$
29 $[29, 29, 2w^{4} - w^{3} - 10w^{2} + 2w + 4]$ $-2e - 7$
32 $[32, 2, 2]$ $\phantom{-}3e + 4$
37 $[37, 37, -w^{4} + w^{3} + 4w^{2} - 2w]$ $\phantom{-}4e + 7$
41 $[41, 41, -3w^{4} + 2w^{3} + 14w^{2} - 5w - 7]$ $\phantom{-}e - 4$
43 $[43, 43, -3w^{4} + w^{3} + 14w^{2} - 3w - 6]$ $-2e - 4$
47 $[47, 47, -3w^{4} + 2w^{3} + 14w^{2} - 7w - 6]$ $-3e - 3$
53 $[53, 53, 2w^{4} - w^{3} - 8w^{2} + 2w + 1]$ $-3e - 12$
53 $[53, 53, -2w^{4} + w^{3} + 10w^{2} - 4w - 6]$ $\phantom{-}4e + 3$
59 $[59, 59, -w^{4} + 4w^{2} + 1]$ $-7e - 13$
59 $[59, 59, -3w^{4} + 2w^{3} + 14w^{2} - 6w - 8]$ $-1$
61 $[61, 61, 4w^{4} - 2w^{3} - 18w^{2} + 5w + 7]$ $-5e - 8$
61 $[61, 61, 3w^{4} - w^{3} - 15w^{2} + 2w + 7]$ $\phantom{-}3e + 2$
73 $[73, 73, -4w^{4} + 2w^{3} + 18w^{2} - 7w - 6]$ $\phantom{-}e + 8$
83 $[83, 83, -2w^{4} + 9w^{2} + 2w - 4]$ $\phantom{-}5e + 1$
83 $[83, 83, -2w^{4} + 2w^{3} + 10w^{2} - 7w - 6]$ $-2$
97 $[97, 97, -2w^{4} + w^{3} + 8w^{2} - 3w + 1]$ $\phantom{-}e - 10$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$59$ $[59, 59, -3w^{4} + 2w^{3} + 14w^{2} - 6w - 8]$ $1$