Base field 5.5.24217.1
Generator \(w\), with minimal polynomial \(x^{5} - 5x^{3} - x^{2} + 3x + 1\); narrow class number \(1\) and class number \(1\).
Form
Weight: | $[2, 2, 2, 2, 2]$ |
Level: | $[59, 59, -w^{4} + 4w^{2} + 1]$ |
Dimension: | $5$ |
CM: | no |
Base change: | no |
Newspace dimension: | $6$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{5} - 3x^{4} - 15x^{3} + 39x^{2} + 15x - 25\) |
Show full eigenvalues Hide large eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
5 | $[5, 5, -2w^{4} + w^{3} + 9w^{2} - 2w - 3]$ | $\phantom{-}e$ |
17 | $[17, 17, -2w^{4} + w^{3} + 9w^{2} - 3w - 5]$ | $\phantom{-}\frac{1}{5}e^{4} - \frac{3}{5}e^{3} - 3e^{2} + \frac{34}{5}e + 2$ |
17 | $[17, 17, w^{2} - 2]$ | $-\frac{1}{10}e^{4} - \frac{1}{5}e^{3} + 2e^{2} + \frac{21}{10}e - 4$ |
23 | $[23, 23, w^{3} - 3w]$ | $-e + 1$ |
29 | $[29, 29, 2w^{4} - w^{3} - 10w^{2} + 2w + 4]$ | $-\frac{1}{5}e^{4} + \frac{3}{5}e^{3} + 3e^{2} - \frac{44}{5}e$ |
32 | $[32, 2, 2]$ | $\phantom{-}\frac{3}{10}e^{4} - \frac{9}{10}e^{3} - 4e^{2} + \frac{107}{10}e + \frac{5}{2}$ |
37 | $[37, 37, -w^{4} + w^{3} + 4w^{2} - 2w]$ | $-\frac{1}{5}e^{4} + \frac{3}{5}e^{3} + 3e^{2} - \frac{34}{5}e - 4$ |
41 | $[41, 41, -3w^{4} + 2w^{3} + 14w^{2} - 5w - 7]$ | $-\frac{1}{5}e^{4} + \frac{3}{5}e^{3} + 3e^{2} - \frac{34}{5}e$ |
43 | $[43, 43, -3w^{4} + w^{3} + 14w^{2} - 3w - 6]$ | $\phantom{-}\frac{2}{5}e^{4} - \frac{7}{10}e^{3} - 6e^{2} + \frac{43}{5}e + \frac{13}{2}$ |
47 | $[47, 47, -3w^{4} + 2w^{3} + 14w^{2} - 7w - 6]$ | $-\frac{1}{5}e^{4} + \frac{3}{5}e^{3} + 2e^{2} - \frac{29}{5}e + 7$ |
53 | $[53, 53, 2w^{4} - w^{3} - 8w^{2} + 2w + 1]$ | $-e^{2} - e + 9$ |
53 | $[53, 53, -2w^{4} + w^{3} + 10w^{2} - 4w - 6]$ | $\phantom{-}\frac{3}{10}e^{4} - \frac{2}{5}e^{3} - 4e^{2} + \frac{37}{10}e + 1$ |
59 | $[59, 59, -w^{4} + 4w^{2} + 1]$ | $\phantom{-}1$ |
59 | $[59, 59, -3w^{4} + 2w^{3} + 14w^{2} - 6w - 8]$ | $\phantom{-}2$ |
61 | $[61, 61, 4w^{4} - 2w^{3} - 18w^{2} + 5w + 7]$ | $\phantom{-}e^{2} + e - 9$ |
61 | $[61, 61, 3w^{4} - w^{3} - 15w^{2} + 2w + 7]$ | $\phantom{-}\frac{1}{5}e^{4} - \frac{1}{10}e^{3} - 3e^{2} - \frac{11}{5}e + \frac{13}{2}$ |
73 | $[73, 73, -4w^{4} + 2w^{3} + 18w^{2} - 7w - 6]$ | $-\frac{2}{5}e^{4} + \frac{1}{5}e^{3} + 7e^{2} - \frac{13}{5}e - 12$ |
83 | $[83, 83, -2w^{4} + 9w^{2} + 2w - 4]$ | $\phantom{-}\frac{1}{10}e^{4} + \frac{1}{5}e^{3} - 3e^{2} - \frac{51}{10}e + 15$ |
83 | $[83, 83, -2w^{4} + 2w^{3} + 10w^{2} - 7w - 6]$ | $-\frac{2}{5}e^{4} + \frac{7}{10}e^{3} + 6e^{2} - \frac{33}{5}e - \frac{13}{2}$ |
97 | $[97, 97, -2w^{4} + w^{3} + 8w^{2} - 3w + 1]$ | $\phantom{-}\frac{1}{5}e^{4} - \frac{3}{5}e^{3} - 3e^{2} + \frac{54}{5}e$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$59$ | $[59, 59, -w^{4} + 4w^{2} + 1]$ | $-1$ |