# Properties

 Base field 5.5.160801.1 Weight [2, 2, 2, 2, 2] Level norm 27 Level $[27, 3, -w^{3} + w^{2} + 3w - 2]$ Label 5.5.160801.1-27.2-b Dimension 2 CM no Base change no

# Related objects

• L-function not available

## Base field 5.5.160801.1

Generator $$w$$, with minimal polynomial $$x^{5} - x^{4} - 5x^{3} + 4x^{2} + 3x - 1$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight [2, 2, 2, 2, 2] Level $[27, 3, -w^{3} + w^{2} + 3w - 2]$ Label 5.5.160801.1-27.2-b Dimension 2 Is CM no Is base change no Parent newspace dimension 25

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{2} + 4x - 3$$
Norm Prime Eigenvalue
3 $[3, 3, w^{4} - w^{3} - 5w^{2} + 3w + 3]$ $-1$
9 $[9, 3, -w^{4} + 5w^{2} - 3]$ $-1$
9 $[9, 3, -w^{4} + w^{3} + 5w^{2} - 3w - 2]$ $-1$
13 $[13, 13, -w^{4} + w^{3} + 4w^{2} - 3w - 1]$ $\phantom{-}e$
17 $[17, 17, w^{4} - w^{3} - 5w^{2} + 3w + 1]$ $\phantom{-}1$
19 $[19, 19, -w^{3} + w^{2} + 4w - 2]$ $\phantom{-}e - 4$
23 $[23, 23, -w^{2} + 3]$ $-e + 2$
31 $[31, 31, w^{3} - 4w + 2]$ $\phantom{-}2e + 1$
32 $[32, 2, 2]$ $\phantom{-}e + 6$
37 $[37, 37, w^{3} - 3w - 1]$ $-2e - 10$
53 $[53, 53, -2w^{4} + w^{3} + 9w^{2} - 3w - 2]$ $\phantom{-}4$
59 $[59, 59, -w^{4} + 5w^{2} + w - 4]$ $-2e + 2$
61 $[61, 61, -w^{4} + w^{3} + 5w^{2} - 4w]$ $\phantom{-}12$
67 $[67, 67, -w^{4} + 6w^{2} + 2w - 4]$ $-2e - 10$
71 $[71, 71, 2w^{4} - w^{3} - 9w^{2} + 4w + 5]$ $\phantom{-}2e + 8$
79 $[79, 79, 2w^{4} - w^{3} - 10w^{2} + 2w + 7]$ $\phantom{-}2e + 8$
83 $[83, 83, -w^{4} + 2w^{3} + 5w^{2} - 7w - 2]$ $\phantom{-}4e + 7$
83 $[83, 83, -w^{4} + w^{3} + 4w^{2} - 3w + 3]$ $-3e - 2$
83 $[83, 83, w^{4} - w^{3} - 5w^{2} + 4w - 1]$ $-3e - 12$
83 $[83, 83, -w^{4} + w^{3} + 4w^{2} - 4w - 2]$ $\phantom{-}4e + 6$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, w^{4} - w^{3} - 5w^{2} + 3w + 3]$ $1$
9 $[9, 3, -w^{4} + w^{3} + 5w^{2} - 3w - 2]$ $1$