/* This code can be loaded, or copied and paste using cpaste, into Sage. It will load the data associated to the HMF, including the field, level, and Hecke and Atkin-Lehner eigenvalue data. */ P. = PolynomialRing(QQ) g = P([-1, 3, 3, -4, -1, 1]) F. = NumberField(g) ZF = F.ring_of_integers() NN = ZF.ideal([109,109,w^4 + w^3 - 5*w^2 - 2*w + 4]) primes_array = [ [11, 11, w^4 + w^3 - 4*w^2 - 3*w + 2],\ [23, 23, -w^4 + 3*w^2 + 1],\ [23, 23, -w^4 + 3*w^2 + w - 2],\ [23, 23, w^4 - w^3 - 3*w^2 + 3*w + 2],\ [23, 23, -w^4 + w^3 + 4*w^2 - 3*w - 1],\ [23, 23, -w^2 + w + 3],\ [32, 2, 2],\ [43, 43, -2*w^4 + w^3 + 6*w^2 - 2*w - 1],\ [43, 43, -w^4 + 2*w^2 + w + 1],\ [43, 43, w^3 + w^2 - 4*w - 2],\ [43, 43, 2*w^4 - w^3 - 7*w^2 + 3*w + 3],\ [43, 43, w^4 - w^3 - 4*w^2 + 4*w + 2],\ [67, 67, 2*w^4 - 7*w^2 + 2],\ [67, 67, w^4 - 2*w^3 - 3*w^2 + 6*w + 2],\ [67, 67, 2*w^4 - 7*w^2 - w + 4],\ [67, 67, w^4 - 2*w^3 - 4*w^2 + 6*w + 2],\ [67, 67, -w^4 + w^3 + 5*w^2 - 3*w - 3],\ [89, 89, w^3 + w^2 - 4*w - 1],\ [89, 89, -2*w^4 + w^3 + 7*w^2 - 3*w - 2],\ [89, 89, -w^4 + w^3 + 4*w^2 - 4*w - 3],\ [89, 89, -w^4 + 2*w^2 + w + 2],\ [89, 89, 2*w^4 - w^3 - 6*w^2 + 2*w + 2],\ [109, 109, -w^3 + 2*w^2 + 3*w - 3],\ [109, 109, w^4 - 4*w^2 - 2*w + 3],\ [109, 109, -2*w^4 + 2*w^3 + 7*w^2 - 4*w - 3],\ [109, 109, 2*w^3 - 5*w - 1],\ [109, 109, -w^4 - w^3 + 5*w^2 + 2*w - 4],\ [131, 131, w^4 - 3*w^3 - 2*w^2 + 7*w],\ [131, 131, -w^4 + 2*w^3 + 5*w^2 - 7*w - 5],\ [131, 131, 2*w^4 - 2*w^3 - 6*w^2 + 3*w + 2],\ [131, 131, w^4 - 2*w^3 - 3*w^2 + 7*w],\ [131, 131, 2*w^4 + w^3 - 8*w^2 - 3*w + 4],\ [197, 197, 3*w^4 - w^3 - 10*w^2 + w + 5],\ [197, 197, 2*w^4 - 7*w^2 + w + 1],\ [197, 197, -3*w^4 + 2*w^3 + 10*w^2 - 5*w - 5],\ [197, 197, -2*w^4 - w^3 + 9*w^2 + 2*w - 5],\ [197, 197, -3*w^4 + 3*w^3 + 10*w^2 - 6*w - 5],\ [199, 199, w^4 + 2*w^3 - 5*w^2 - 5*w + 3],\ [199, 199, -2*w^4 + w^3 + 7*w^2 - 4*w - 2],\ [199, 199, -w^4 + 2*w^3 + 4*w^2 - 7*w - 3],\ [199, 199, 2*w^4 - 8*w^2 + w + 4],\ [199, 199, 3*w^4 - w^3 - 10*w^2 + 2*w + 4],\ [241, 241, w^4 - 2*w^3 - w^2 + 3*w - 3],\ [241, 241, -w^4 + 3*w^3 + 2*w^2 - 9*w],\ [241, 241, 3*w^4 - 11*w^2 - 2*w + 6],\ [241, 241, -w^4 + 2*w^3 + 5*w^2 - 6*w - 4],\ [241, 241, -2*w^4 + 2*w^3 + 9*w^2 - 5*w - 6],\ [243, 3, -3],\ [263, 263, -w^4 + 4*w^2 + w + 1],\ [263, 263, 2*w^4 - w^3 - 8*w^2 + w + 2],\ [263, 263, 3*w^4 - 3*w^3 - 9*w^2 + 7*w + 2],\ [263, 263, -2*w^3 + w^2 + 4*w - 4],\ [263, 263, -3*w^2 + w + 5],\ [307, 307, 2*w^4 - w^3 - 6*w^2 + 3*w - 2],\ [307, 307, w^4 - 2*w^2 - 2*w - 4],\ [307, 307, -3*w^4 + 2*w^3 + 11*w^2 - 3*w - 6],\ [307, 307, -2*w^4 + 2*w^3 + 7*w^2 - 6*w - 6],\ [307, 307, -w^4 + 3*w^3 + 4*w^2 - 7*w - 3],\ [331, 331, -w^4 - 2*w^3 + 3*w^2 + 7*w - 1],\ [331, 331, -w^4 + 3*w^3 + 4*w^2 - 8*w - 4],\ [331, 331, w^4 - w^2 - 4],\ [331, 331, 3*w^4 - 2*w^3 - 9*w^2 + 5*w + 2],\ [331, 331, -3*w^4 + 2*w^3 + 11*w^2 - 6*w - 5],\ [353, 353, -2*w^4 + w^3 + 9*w^2 - 3*w - 5],\ [353, 353, -2*w^4 - w^3 + 7*w^2 + 4*w - 4],\ [353, 353, -w^4 + 3*w^3 + 3*w^2 - 9*w - 3],\ [353, 353, -3*w^4 + 11*w^2 + w - 7],\ [353, 353, w^4 - w^3 - 6*w^2 + 3*w + 4],\ [373, 373, w^3 + 2*w^2 - 5*w - 3],\ [373, 373, 2*w^4 - 3*w^3 - 6*w^2 + 6*w],\ [373, 373, -w^4 + w^3 + 3*w^2 - 3*w + 3],\ [373, 373, -2*w^4 + 2*w^3 + 8*w^2 - 7*w - 5],\ [373, 373, -w^4 + w^3 + 4*w^2 - 3*w - 6],\ [397, 397, -w^4 - w^3 + 6*w^2 + 3*w - 5],\ [397, 397, 2*w^4 - 2*w^3 - 7*w^2 + 3*w + 3],\ [397, 397, -w^4 + 5*w^2 + 2*w - 5],\ [397, 397, w^4 + 2*w^3 - 5*w^2 - 5*w + 4],\ [397, 397, -w^4 + 3*w^3 + 3*w^2 - 7*w - 2],\ [419, 419, 3*w^3 - w^2 - 8*w],\ [419, 419, 2*w^4 - 3*w^3 - 6*w^2 + 6*w + 1],\ [419, 419, w^4 - 2*w^3 - 5*w^2 + 7*w + 4],\ [419, 419, -2*w^4 - w^3 + 9*w^2 + 3*w - 7],\ [419, 419, -w^4 + 3*w^3 + w^2 - 8*w + 1],\ [439, 439, -w^4 + w^3 + 5*w^2 - 5*w - 5],\ [439, 439, 2*w^4 - 9*w^2 - 2*w + 8],\ [439, 439, -3*w^4 + 2*w^3 + 11*w^2 - 5*w - 3],\ [439, 439, 2*w^4 - 2*w^3 - 8*w^2 + 3*w + 4],\ [439, 439, -w^4 + 3*w^3 + 3*w^2 - 6*w - 3],\ [461, 461, -w^4 + 5*w^2 + 2*w - 6],\ [461, 461, -w^4 + 3*w^2 - w + 3],\ [461, 461, -w^4 - 2*w^3 + 5*w^2 + 5*w - 5],\ [461, 461, -2*w^4 + 7*w^2 + w - 6],\ [461, 461, -w^4 + 3*w^3 + 3*w^2 - 7*w - 3],\ [463, 463, 2*w^4 - 2*w^3 - 8*w^2 + 5*w + 3],\ [463, 463, w^4 + w^3 - 3*w^2 - 2*w - 2],\ [463, 463, 2*w^4 - 7*w^2 - 2*w + 5],\ [463, 463, w^4 - 2*w^3 - 2*w^2 + 6*w + 1],\ [463, 463, -w^3 + 2*w^2 + w - 5],\ [571, 571, w^4 - w^3 - 3*w^2 + 2*w - 3],\ [571, 571, 3*w^4 - 2*w^3 - 10*w^2 + 6*w + 2],\ [571, 571, -2*w^4 + 2*w^3 + 8*w^2 - 7*w - 6],\ [571, 571, 2*w^4 - 5*w^2 - 2*w - 2],\ [571, 571, 3*w^4 - w^3 - 9*w^2 + 2*w + 3],\ [593, 593, 3*w^4 - w^3 - 9*w^2 + w + 3],\ [593, 593, -w^4 + 2*w^3 + 5*w^2 - 7*w - 3],\ [593, 593, -2*w^4 + 2*w^3 + 7*w^2 - 7*w - 4],\ [593, 593, w^4 - w^2 - 2*w - 4],\ [593, 593, 3*w^4 - w^3 - 10*w^2 + 3*w + 2],\ [617, 617, -w^4 - w^3 + 6*w^2 + 4*w - 5],\ [617, 617, 3*w^3 - w^2 - 7*w],\ [617, 617, 2*w^4 - w^3 - 8*w^2 + 6],\ [617, 617, 2*w^4 - 3*w^3 - 7*w^2 + 6*w + 3],\ [617, 617, -w^4 - 2*w^3 + 6*w^2 + 5*w - 6],\ [659, 659, -w^4 + w^3 + 4*w^2 - 5*w - 4],\ [659, 659, 2*w^3 + w^2 - 7*w],\ [659, 659, -3*w^4 + 2*w^3 + 9*w^2 - 4*w - 4],\ [659, 659, 3*w^4 - w^3 - 11*w^2 + 3*w + 3],\ [659, 659, w^4 - w^2 - w - 5],\ [661, 661, -5*w^4 + 2*w^3 + 18*w^2 - 4*w - 9],\ [661, 661, -w^4 + 3*w^3 + 6*w^2 - 9*w - 8],\ [661, 661, w^4 + 2*w^3 - 2*w^2 - 7*w - 2],\ [661, 661, -w^4 + w^3 + 5*w^2 - 2*w - 9],\ [661, 661, -3*w^4 + 2*w^3 + 12*w^2 - 2*w - 8],\ [683, 683, -w^4 + w^3 + 4*w^2 - 5*w - 3],\ [683, 683, 2*w^3 + w^2 - 7*w - 1],\ [683, 683, w^4 - w^2 - w - 4],\ [683, 683, 3*w^4 - 2*w^3 - 9*w^2 + 4*w + 3],\ [683, 683, 3*w^4 - w^3 - 11*w^2 + 3*w + 4],\ [727, 727, -5*w^4 + 3*w^3 + 19*w^2 - 7*w - 9],\ [727, 727, -2*w^4 - 2*w^3 + 7*w^2 + 9*w - 4],\ [727, 727, 3*w^4 + 2*w^3 - 13*w^2 - 6*w + 6],\ [727, 727, w^4 - 2*w^2 + 3*w - 4],\ [727, 727, -2*w^4 + 5*w^3 + 6*w^2 - 14*w - 4],\ [769, 769, -2*w^4 - w^3 + 9*w^2 + 2*w - 7],\ [769, 769, -w^4 + 4*w^2 + 3*w - 4],\ [769, 769, -w^3 + 3*w^2 + 3*w - 4],\ [769, 769, 3*w^4 - 3*w^3 - 10*w^2 + 6*w + 3],\ [769, 769, 3*w^3 - 8*w - 2],\ [857, 857, w^4 - 5*w^3 - 2*w^2 + 14*w - 1],\ [857, 857, 4*w^4 - w^3 - 13*w^2 + 4],\ [857, 857, -2*w^4 + 4*w^3 + 6*w^2 - 10*w - 5],\ [857, 857, 4*w^4 + w^3 - 14*w^2 - 5*w + 6],\ [857, 857, 4*w^4 + w^3 - 16*w^2 - 4*w + 8],\ [859, 859, 3*w^4 - w^3 - 11*w^2 + 5*w + 5],\ [859, 859, -2*w^4 + 5*w^3 + 6*w^2 - 13*w - 1],\ [859, 859, -2*w^4 - 2*w^3 + 5*w^2 + 7*w + 1],\ [859, 859, -w^3 + w^2 + 6*w + 1],\ [859, 859, 4*w^4 - w^3 - 13*w^2 + 3*w + 4],\ [881, 881, 2*w^4 + w^3 - 11*w^2 - 3*w + 11],\ [881, 881, w^4 - 6*w^2 - 3*w + 5],\ [881, 881, -2*w^4 + 5*w^3 + 6*w^2 - 12*w - 1],\ [881, 881, -2*w^4 - 3*w^3 + 9*w^2 + 8*w - 4],\ [881, 881, 3*w^4 + w^3 - 12*w^2 - 3*w + 7],\ [947, 947, 2*w^4 + 3*w^3 - 7*w^2 - 8*w],\ [947, 947, 2*w^4 - 3*w^3 - 6*w^2 + 4*w],\ [947, 947, 2*w^4 + 2*w^3 - 7*w^2 - 8*w + 4],\ [947, 947, -w^4 + 2*w^3 - 7*w + 3],\ [947, 947, -4*w^4 + 5*w^3 + 14*w^2 - 12*w - 5],\ [967, 967, 2*w^4 - w^3 - 9*w^2 + 3*w + 4],\ [967, 967, -2*w^4 - w^3 + 7*w^2 + 4*w - 5],\ [967, 967, w^4 - 2*w^2 + w - 4],\ [967, 967, w^4 - w^3 - 2*w^2 - 3],\ [967, 967, -2*w^4 + 3*w^3 + 6*w^2 - 8*w - 4],\ [991, 991, -w^4 + 4*w^3 + 2*w^2 - 12*w - 1],\ [991, 991, w^4 + 3*w^3 - 3*w^2 - 11*w - 1],\ [991, 991, 2*w^3 - 2*w^2 - 5*w + 8],\ [991, 991, -2*w^4 + 3*w^3 + 4*w^2 - 5*w + 3],\ [991, 991, 4*w^4 - 4*w^3 - 11*w^2 + 9*w]] primes = [ZF.ideal(I) for I in primes_array] heckePol = x^4 - 2*x^3 - 17*x^2 + 36*x - 9 K. = NumberField(heckePol) hecke_eigenvalues_array = [e, -1/3*e^2 - 2/3*e + 5, 2*e, 1/3*e^2 + 2/3*e - 2, 1/3*e^3 - 19/3*e + 4, 2/3*e^3 - 2/3*e^2 - 12*e + 12, 1/3*e^3 - 2/3*e^2 - 20/3*e + 8, -2/3*e^3 + 38/3*e - 6, -1/3*e^3 + 13/3*e - 2, 2/3*e^3 - 2/3*e^2 - 10*e + 8, -2/3*e^3 + 2/3*e^2 + 10*e - 10, -2/3*e^3 + 2/3*e^2 + 10*e - 10, -2/3*e^3 - 2/3*e^2 + 28/3*e + 4, -2/3*e^3 + e^2 + 32/3*e - 12, -2*e + 2, 2/3*e^3 - 35/3*e + 16, -1/3*e^3 + 2/3*e^2 + 11/3*e - 6, 2*e^2 - 18, 1/3*e^3 - 2/3*e^2 - 17/3*e + 8, 2/3*e^3 + 2/3*e^2 - 34/3*e - 2, -e^2 + 9, -2/3*e^3 + 1/3*e^2 + 34/3*e - 7, -2/3*e^3 - e^2 + 32/3*e + 3, -4/3*e^3 + 2/3*e^2 + 74/3*e - 18, 2/3*e^3 + 2/3*e^2 - 28/3*e - 6, 2/3*e^3 + e^2 - 32/3*e - 8, 1, e^2 - 12, 4*e - 6, -4/3*e^3 + 1/3*e^2 + 20*e - 12, -1/3*e^3 + 4/3*e^2 + 7*e - 18, -1/3*e^2 + 4/3*e - 1, -4/3*e^3 - 2/3*e^2 + 22*e - 6, 4/3*e^3 - 4/3*e^2 - 19*e + 24, 2*e^3 - 2*e^2 - 33*e + 36, -4/3*e^3 + 2/3*e^2 + 74/3*e - 20, 4/3*e^3 - 2*e^2 - 73/3*e + 34, -2/3*e^2 - 10/3*e + 6, 2/3*e^2 - 5/3*e + 4, -2/3*e^3 - e^2 + 32/3*e + 3, -1/3*e^2 + 10/3*e - 2, -2*e^3 + 8/3*e^2 + 100/3*e - 38, 1/3*e^2 + 2/3*e - 9, -2/3*e^2 - 4/3*e + 24, -2/3*e^3 + 20/3*e - 6, 2/3*e^3 - 4/3*e^2 - 22/3*e + 30, 1/3*e^3 + 2*e^2 - 7/3*e - 24, 2/3*e^3 - 2/3*e^2 - 16*e + 10, -2/3*e^3 + 2/3*e^2 + 6*e - 12, 4/3*e^3 - 79/3*e + 16, 2*e^2 - 24, -2*e + 18, -5/3*e^2 - 4/3*e + 10, 2/3*e^3 - 5/3*e^2 - 10*e + 11, -2*e^3 + 1/3*e^2 + 98/3*e - 21, -2/3*e^3 + 4/3*e^2 + 22/3*e - 20, -2/3*e^3 + 2*e^2 + 38/3*e - 30, -2/3*e^3 + 38/3*e - 12, -2*e^3 + 2*e^2 + 40*e - 40, -4/3*e^3 + 2/3*e^2 + 62/3*e - 18, -2/3*e^3 + 4/3*e^2 + 28/3*e - 20, -4/3*e^3 + 67/3*e - 2, 2/3*e^3 - 2/3*e^2 - 9*e + 14, -4/3*e^3 + 4/3*e^2 + 27*e - 18, -4/3*e^3 + 2*e^2 + 70/3*e - 10, 2*e^3 - 4/3*e^2 - 92/3*e + 38, 4/3*e^3 - 2/3*e^2 - 74/3*e + 32, 7/3*e^3 - 4*e^2 - 127/3*e + 46, -2/3*e^3 - 2/3*e^2 + 40/3*e - 8, 2*e^2 + e - 16, 4/3*e^3 - e^2 - 58/3*e + 6, 4/3*e^3 + 1/3*e^2 - 50/3*e - 8, -2/3*e^3 + 8/3*e^2 + 8*e - 34, -2*e^3 + 2/3*e^2 + 106/3*e - 26, 2/3*e^3 - 4/3*e^2 - 22/3*e + 6, 4/3*e^3 + 2/3*e^2 - 24*e - 4, 2*e^3 - 2*e^2 - 30*e + 20, 2*e^2 - 4*e - 22, 2*e^3 - 4*e^2 - 36*e + 42, 4/3*e^3 - 4/3*e^2 - 24*e + 36, -2/3*e^3 + e^2 + 50/3*e - 2, -2*e^3 + 32*e - 18, -4/3*e^3 + 2/3*e^2 + 86/3*e - 26, -2/3*e^3 + 4/3*e^2 + 58/3*e - 32, -2*e^3 + 7/3*e^2 + 104/3*e - 21, -2/3*e^3 + 23/3*e, 4/3*e^3 - 2*e^2 - 76/3*e + 18, 2*e^2 - 2*e - 4, -2/3*e^3 - 2/3*e^2 + 13/3*e + 8, 4/3*e^3 - 4/3*e^2 - 18*e + 6, -4/3*e^3 + 2/3*e^2 + 74/3*e - 26, 4/3*e^3 - 7/3*e^2 - 26*e + 21, 1/3*e^3 + 2/3*e^2 - 9*e - 12, -2/3*e^3 + 2/3*e^2 + 14*e + 2, 2/3*e^3 - 4/3*e^2 - 37/3*e + 42, 4/3*e^3 - 5/3*e^2 - 86/3*e + 19, 10/3*e^3 - 7/3*e^2 - 58*e + 56, -2*e^2 + 2*e + 8, 10/3*e^3 - 7/3*e^2 - 60*e + 53, 4*e^3 - 11/3*e^2 - 190/3*e + 63, 4/3*e^3 - 8/3*e^2 - 80/3*e + 22, -2/3*e^3 + e^2 + 26/3*e - 24, -2/3*e^2 + 11/3*e + 24, 4/3*e^3 - 5/3*e^2 - 62/3*e + 8, -2*e^3 + e^2 + 34*e - 12, 1/3*e^3 + 4/3*e^2 - 5/3*e - 4, -2/3*e^3 + 11/3*e^2 + 10*e - 27, -1/3*e^3 - 2/3*e^2 + e - 6, 5/3*e^3 - 8/3*e^2 - 31*e + 24, -2*e^3 - 2*e^2 + 33*e + 6, 2/3*e^3 - 4*e^2 - 32/3*e + 50, -2/3*e^3 + 2/3*e^2 + 12*e, -10/3*e^3 + 10/3*e^2 + 54*e - 60, -2/3*e^3 + 4/3*e^2 + 22/3*e - 28, -10/3*e^3 + 2/3*e^2 + 158/3*e - 38, -4/3*e^3 + 2/3*e^2 + 74/3*e - 8, -2/3*e^3 - 2*e^2 + 26/3*e + 46, 4/3*e^3 - 88/3*e - 2, 8/3*e^2 - 20/3*e - 32, 2/3*e^3 + 2/3*e^2 - 52/3*e + 12, 4*e - 16, 2*e^3 - 7/3*e^2 - 110/3*e + 22, 4/3*e^3 + 2/3*e^2 - 18*e + 8, 4/3*e^3 + 1/3*e^2 - 86/3*e - 4, -2*e^3 + 7/3*e^2 + 92/3*e - 44, 2/3*e^3 + 10/3*e^2 - 10*e - 18, -e^3 + 2*e^2 + 21*e - 18, 2/3*e^3 - 56/3*e - 4, 4/3*e^3 - 1/3*e^2 - 26*e - 1, -e^3 - 2/3*e^2 + 41/3*e - 12, -2/3*e^3 + 2*e^2 + 50/3*e - 18, 8/3*e^3 - 2/3*e^2 - 39*e + 14, -4/3*e^3 + 4/3*e^2 + 30*e - 40, 8/3*e^3 - 8/3*e^2 - 52*e + 50, 7/3*e^3 - 2*e^2 - 133/3*e + 18, 4*e^3 - 13/3*e^2 - 200/3*e + 67, -2/3*e^3 - 4/3*e^2 + 12*e - 10, 4/3*e^3 - 2*e^2 - 58/3*e + 6, 2/3*e^3 - 1/3*e^2 - 40/3*e - 11, -5/3*e^3 + 10/3*e^2 + 91/3*e - 16, -2/3*e^3 - 8/3*e^2 + 22/3*e + 26, 2*e^3 - 10/3*e^2 - 77/3*e + 50, 10/3*e^3 + 2/3*e^2 - 60*e + 42, 10/3*e^3 - 2*e^2 - 166/3*e + 42, 8/3*e^3 - 137/3*e + 10, -5/3*e^3 + 2*e^2 + 95/3*e - 48, 10/3*e^3 - 3*e^2 - 190/3*e + 57, -2/3*e^3 - 1/3*e^2 + 12*e - 19, 8/3*e^3 - 2/3*e^2 - 50*e + 30, -8/3*e^3 + 2/3*e^2 + 46*e - 18, -2/3*e^3 - 5/3*e^2 + 40/3*e + 14, 4/3*e^3 - 10/3*e^2 - 28*e + 24, 8/3*e^3 - 2*e^2 - 134/3*e + 38, 4/3*e^3 - 8/3*e^2 - 104/3*e + 44, 2/3*e^3 + 4/3*e^2 - 9*e - 18, 2/3*e^3 + 4/3*e^2 - 18*e, -4/3*e^3 - 4/3*e^2 + 80/3*e + 4, -10/3*e^3 + 10/3*e^2 + 67*e - 66, 10/3*e^3 - 8/3*e^2 - 200/3*e + 52, -4/3*e^3 + 4/3*e^2 + 32*e - 4, 4*e^3 - 3*e^2 - 72*e + 77, 4/3*e^3 + 5/3*e^2 - 22*e - 7, 2/3*e^3 - 2/3*e^2 - 9*e + 20, -e^3 - 2*e^2 + 17*e + 14, 2*e^3 - 14/3*e^2 - 94/3*e + 54, -4/3*e^3 - 3*e^2 + 64/3*e + 22, -2*e^3 - 10/3*e^2 + 94/3*e + 22, 2/3*e^3 + 2/3*e^2 - 16/3*e + 18] hecke_eigenvalues = {} for i in range(len(hecke_eigenvalues_array)): hecke_eigenvalues[primes[i]] = hecke_eigenvalues_array[i] AL_eigenvalues = {} AL_eigenvalues[ZF.ideal([109,109,w^4 + w^3 - 5*w^2 - 2*w + 4])] = -1 # EXAMPLE: # pp = ZF.ideal(2).factor()[0][0] # hecke_eigenvalues[pp]