Properties

Label 4.4.7225.1-25.1-c
Base field \(\Q(\sqrt{5}, \sqrt{17})\)
Weight $[2, 2, 2, 2]$
Level norm $25$
Level $[25, 5, \frac{1}{3}w^{3} - \frac{8}{3}w]$
Dimension $4$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{5}, \sqrt{17})\)

Generator \(w\), with minimal polynomial \(x^{4} - 11x^{2} + 9\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[25, 5, \frac{1}{3}w^{3} - \frac{8}{3}w]$
Dimension: $4$
CM: no
Base change: no
Newspace dimension: $15$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{4} - 36x^{2} + 144\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, \frac{1}{6}w^{3} - \frac{7}{3}w - \frac{3}{2}]$ $\phantom{-}\frac{1}{24}e^{3} - e - 1$
4 $[4, 2, \frac{1}{6}w^{3} - \frac{7}{3}w + \frac{3}{2}]$ $-\frac{1}{24}e^{3} + e - 1$
9 $[9, 3, -\frac{1}{3}w^{3} + \frac{11}{3}w]$ $-\frac{1}{24}e^{3} + 2e + 1$
9 $[9, 3, w]$ $\phantom{-}\frac{1}{24}e^{3} - 2e + 1$
19 $[19, 19, w + 2]$ $\phantom{-}\frac{1}{4}e^{2} - \frac{1}{2}e - 7$
19 $[19, 19, -\frac{1}{3}w^{3} + \frac{11}{3}w - 2]$ $\phantom{-}\frac{1}{4}e^{2} + \frac{1}{2}e - 7$
19 $[19, 19, -\frac{1}{3}w^{3} + \frac{11}{3}w + 2]$ $-\frac{1}{24}e^{3} - \frac{1}{4}e^{2} + \frac{3}{2}e + 2$
19 $[19, 19, -w + 2]$ $\phantom{-}\frac{1}{24}e^{3} - \frac{1}{4}e^{2} - \frac{3}{2}e + 2$
25 $[25, 5, \frac{1}{3}w^{3} - \frac{8}{3}w]$ $\phantom{-}1$
49 $[49, 7, \frac{2}{3}w^{3} - \frac{19}{3}w]$ $-\frac{1}{24}e^{3} + 2e - 1$
49 $[49, 7, -\frac{1}{3}w^{3} + \frac{5}{3}w]$ $\phantom{-}\frac{1}{24}e^{3} - 2e - 1$
59 $[59, 59, \frac{1}{6}w^{3} + \frac{1}{2}w^{2} - \frac{11}{6}w]$ $\phantom{-}\frac{1}{8}e^{3} + \frac{1}{2}e^{2} - 4e - 3$
59 $[59, 59, \frac{1}{2}w^{2} + \frac{1}{2}w - \frac{11}{2}]$ $\phantom{-}\frac{1}{24}e^{3} - \frac{1}{2}e^{2} + 15$
59 $[59, 59, \frac{1}{2}w^{2} - \frac{1}{2}w - \frac{11}{2}]$ $-\frac{1}{8}e^{3} + \frac{1}{2}e^{2} + 4e - 3$
59 $[59, 59, \frac{1}{6}w^{3} - \frac{1}{2}w^{2} - \frac{11}{6}w]$ $-\frac{1}{24}e^{3} - \frac{1}{2}e^{2} + 15$
89 $[89, 89, \frac{2}{3}w^{3} + \frac{1}{2}w^{2} - \frac{35}{6}w - \frac{7}{2}]$ $-\frac{1}{8}e^{3} - \frac{1}{4}e^{2} + \frac{11}{2}e$
89 $[89, 89, -\frac{5}{6}w^{3} + \frac{26}{3}w - \frac{3}{2}]$ $\phantom{-}\frac{1}{12}e^{3} + \frac{1}{4}e^{2} - \frac{9}{2}e - 9$
89 $[89, 89, \frac{1}{6}w^{3} - \frac{1}{2}w^{2} + \frac{1}{6}w - 2]$ $\phantom{-}\frac{1}{8}e^{3} - \frac{1}{4}e^{2} - \frac{11}{2}e$
89 $[89, 89, -\frac{1}{6}w^{3} - w^{2} + \frac{7}{3}w + \frac{5}{2}]$ $-\frac{1}{12}e^{3} + \frac{1}{4}e^{2} + \frac{9}{2}e - 9$
101 $[101, 101, \frac{1}{6}w^{3} + \frac{1}{2}w^{2} - \frac{17}{6}w + 1]$ $-\frac{1}{4}e^{3} - \frac{1}{4}e^{2} + 7e$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$25$ $[25,5,\frac{1}{3}w^{3}-\frac{8}{3}w]$ $-1$