Properties

Label 4.4.5725.1-1.1-a
Base field 4.4.5725.1
Weight $[2, 2, 2, 2]$
Level norm $1$
Level $[1, 1, 1]$
Dimension $2$
CM no
Base change yes

Related objects

Downloads

Learn more

Base field 4.4.5725.1

Generator \(w\), with minimal polynomial \(x^{4} - x^{3} - 8x^{2} + 6x + 11\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[1, 1, 1]$
Dimension: $2$
CM: no
Base change: yes
Newspace dimension: $2$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{2} + 2x - 5\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
9 $[9, 3, \frac{1}{3}w^{3} - \frac{8}{3}w - \frac{2}{3}]$ $\phantom{-}e$
9 $[9, 3, -w + 1]$ $\phantom{-}e$
11 $[11, 11, w]$ $-e - 1$
11 $[11, 11, -\frac{1}{3}w^{3} + \frac{2}{3}w + \frac{5}{3}]$ $-e - 1$
11 $[11, 11, \frac{1}{3}w^{3} - \frac{8}{3}w + \frac{1}{3}]$ $-e - 1$
11 $[11, 11, -\frac{2}{3}w^{3} + \frac{13}{3}w + \frac{4}{3}]$ $-e - 1$
16 $[16, 2, 2]$ $-e + 4$
25 $[25, 5, \frac{2}{3}w^{3} - \frac{10}{3}w - \frac{1}{3}]$ $\phantom{-}2e + 6$
29 $[29, 29, -w - 3]$ $\phantom{-}3e$
29 $[29, 29, -\frac{1}{3}w^{3} + \frac{8}{3}w - \frac{10}{3}]$ $\phantom{-}3e$
31 $[31, 31, w^{3} - 6w + 1]$ $\phantom{-}e - 1$
31 $[31, 31, w^{3} - 6w - 2]$ $\phantom{-}e - 1$
41 $[41, 41, \frac{2}{3}w^{3} + w^{2} - \frac{13}{3}w - \frac{10}{3}]$ $\phantom{-}2e - 1$
41 $[41, 41, \frac{2}{3}w^{3} - \frac{13}{3}w + \frac{5}{3}]$ $\phantom{-}2e - 1$
59 $[59, 59, \frac{2}{3}w^{3} - \frac{13}{3}w + \frac{8}{3}]$ $-5e - 5$
59 $[59, 59, w^{3} + w^{2} - 6w - 4]$ $-5e - 5$
79 $[79, 79, \frac{2}{3}w^{3} + w^{2} - \frac{10}{3}w - \frac{19}{3}]$ $-3e - 5$
79 $[79, 79, \frac{1}{3}w^{3} + w^{2} - \frac{2}{3}w - \frac{17}{3}]$ $-3e - 5$
89 $[89, 89, \frac{4}{3}w^{3} - \frac{23}{3}w - \frac{5}{3}]$ $-2e - 5$
89 $[89, 89, \frac{1}{3}w^{3} + 2w^{2} - \frac{5}{3}w - \frac{32}{3}]$ $-2e - 5$
Display number of eigenvalues

Atkin-Lehner eigenvalues

This form has no Atkin-Lehner eigenvalues since the level is \((1)\).