Properties

Label 4.4.5125.1-45.2-b
Base field 4.4.5125.1
Weight $[2, 2, 2, 2]$
Level norm $45$
Level $[45,15,w^{3} - 5w - 2]$
Dimension $2$
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.5125.1

Generator \(w\), with minimal polynomial \(x^{4} - 2x^{3} - 6x^{2} + 7x + 11\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[45,15,w^{3} - 5w - 2]$
Dimension: $2$
CM: no
Base change: no
Newspace dimension: $10$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{2} + 2x - 1\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
5 $[5, 5, -w^{2} + 2w + 3]$ $-1$
9 $[9, 3, w^{3} - 3w^{2} - 2w + 9]$ $\phantom{-}e$
9 $[9, 3, -w^{3} + 5w + 5]$ $-1$
11 $[11, 11, w]$ $-e - 3$
11 $[11, 11, w - 1]$ $\phantom{-}2e + 1$
16 $[16, 2, 2]$ $\phantom{-}e$
19 $[19, 19, -w^{3} + 2w^{2} + 3w - 2]$ $\phantom{-}3e + 4$
19 $[19, 19, w^{3} - w^{2} - 4w + 2]$ $\phantom{-}e + 7$
29 $[29, 29, w^{3} - 4w^{2} - w + 10]$ $-2e - 4$
29 $[29, 29, -w^{3} + 3w^{2} + w - 7]$ $-3e + 3$
41 $[41, 41, 3w^{2} - 2w - 10]$ $\phantom{-}2e + 3$
49 $[49, 7, -2w^{2} + 3w + 8]$ $\phantom{-}2e + 7$
49 $[49, 7, w^{3} - 2w^{2} - 2w + 5]$ $\phantom{-}4e + 1$
71 $[71, 71, -w - 3]$ $-3e - 4$
71 $[71, 71, w - 4]$ $\phantom{-}8e + 5$
79 $[79, 79, -w^{3} + w^{2} + 3w + 3]$ $-7e - 1$
79 $[79, 79, -w^{3} + 2w^{2} + 2w - 6]$ $-3e - 1$
89 $[89, 89, w^{3} - 3w^{2} - 3w + 7]$ $-4e - 1$
89 $[89, 89, w^{3} - 6w - 2]$ $\phantom{-}6e + 15$
101 $[101, 101, 2w^{3} - 5w^{2} - 3w + 9]$ $-7e - 4$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$5$ $[5,5,-w^{2} + 4]$ $1$
$9$ $[9,3,-w^{3} + 5w + 5]$ $1$