Properties

Base field 4.4.4752.1
Weight [2, 2, 2, 2]
Level norm 4
Level $[4, 2, -w^{3} + w^{2} + 3w]$
Label 4.4.4752.1-4.1-a
Dimension 2
CM no
Base change yes

Related objects

Downloads

Learn more about

Base field 4.4.4752.1

Generator \(w\), with minimal polynomial \(x^{4} - 2x^{3} - 3x^{2} + 4x + 1\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2, 2, 2]
Level $[4, 2, -w^{3} + w^{2} + 3w]$
Label 4.4.4752.1-4.1-a
Dimension 2
Is CM no
Is base change yes
Parent newspace dimension 2

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{2} - 11\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, -w - 1]$ $\phantom{-}e$
4 $[4, 2, -w^{3} + w^{2} + 3w]$ $-1$
11 $[11, 11, -w^{2} + 3]$ $-2e$
13 $[13, 13, w^{3} - 2w^{2} - w + 1]$ $-1$
13 $[13, 13, w^{3} - w^{2} - 2w + 1]$ $-1$
23 $[23, 23, -w^{3} + w^{2} + 4w - 2]$ $\phantom{-}e$
23 $[23, 23, w^{3} - 2w^{2} - 3w + 2]$ $\phantom{-}e$
47 $[47, 47, -w^{3} + 2w^{2} + 3w - 1]$ $-3e$
47 $[47, 47, -w^{3} + w^{2} + 4w - 3]$ $-3e$
59 $[59, 59, w^{2} - 5]$ $\phantom{-}0$
59 $[59, 59, w^{2} - 2w - 4]$ $\phantom{-}0$
61 $[61, 61, -w^{3} + 2w^{2} + 4w - 4]$ $\phantom{-}7$
61 $[61, 61, w^{3} - w^{2} - 5w + 1]$ $\phantom{-}7$
71 $[71, 71, w^{3} - w^{2} - 2w - 2]$ $-2e$
71 $[71, 71, -w^{3} + 2w^{2} + w - 4]$ $-2e$
73 $[73, 73, 2w^{2} - w - 5]$ $-11$
73 $[73, 73, w^{3} - 2w^{2} - 2w + 6]$ $-11$
83 $[83, 83, -2w^{3} + 3w^{2} + 6w - 6]$ $-4e$
83 $[83, 83, -2w^{3} + 4w^{2} + 5w - 5]$ $\phantom{-}e$
83 $[83, 83, -2w^{3} + 2w^{2} + 7w - 2]$ $\phantom{-}e$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, -w^{3} + w^{2} + 3w]$ $1$