Properties

Base field 4.4.4752.1
Weight [2, 2, 2, 2]
Level norm 23
Level $[23,23,w^{3} - 2w^{2} - 3w + 2]$
Label 4.4.4752.1-23.2-b
Dimension 1
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.4752.1

Generator \(w\), with minimal polynomial \(x^{4} - 2x^{3} - 3x^{2} + 4x + 1\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2, 2, 2]
Level $[23,23,w^{3} - 2w^{2} - 3w + 2]$
Label 4.4.4752.1-23.2-b
Dimension 1
Is CM no
Is base change no
Parent newspace dimension 2

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, -w - 1]$ $-2$
4 $[4, 2, -w^{3} + w^{2} + 3w]$ $\phantom{-}0$
11 $[11, 11, -w^{2} + 3]$ $-4$
13 $[13, 13, w^{3} - 2w^{2} - w + 1]$ $\phantom{-}0$
13 $[13, 13, w^{3} - w^{2} - 2w + 1]$ $\phantom{-}2$
23 $[23, 23, -w^{3} + w^{2} + 4w - 2]$ $-4$
23 $[23, 23, w^{3} - 2w^{2} - 3w + 2]$ $\phantom{-}1$
47 $[47, 47, -w^{3} + 2w^{2} + 3w - 1]$ $-4$
47 $[47, 47, -w^{3} + w^{2} + 4w - 3]$ $\phantom{-}2$
59 $[59, 59, w^{2} - 5]$ $\phantom{-}4$
59 $[59, 59, w^{2} - 2w - 4]$ $-12$
61 $[61, 61, -w^{3} + 2w^{2} + 4w - 4]$ $\phantom{-}14$
61 $[61, 61, w^{3} - w^{2} - 5w + 1]$ $-2$
71 $[71, 71, w^{3} - w^{2} - 2w - 2]$ $-2$
71 $[71, 71, -w^{3} + 2w^{2} + w - 4]$ $-6$
73 $[73, 73, 2w^{2} - w - 5]$ $-2$
73 $[73, 73, w^{3} - 2w^{2} - 2w + 6]$ $-14$
83 $[83, 83, -2w^{3} + 3w^{2} + 6w - 6]$ $-4$
83 $[83, 83, -2w^{3} + 4w^{2} + 5w - 5]$ $-12$
83 $[83, 83, -2w^{3} + 2w^{2} + 7w - 2]$ $\phantom{-}4$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
23 $[23,23,w^{3} - 2w^{2} - 3w + 2]$ $-1$