Base field 4.4.2225.1
Generator \(w\), with minimal polynomial \(x^{4} - x^{3} - 5x^{2} + 2x + 4\); narrow class number \(1\) and class number \(1\).
Form
| Weight | [2, 2, 2, 2] |
| Level | $[496,62,-w^{3} - w^{2} + 3w + 6]$ |
| Label | 4.4.2225.1-496.2-g |
| Dimension | 1 |
| Is CM | no |
| Is base change | no |
| Parent newspace dimension | 27 |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
| Norm | Prime | Eigenvalue |
|---|---|---|
| 4 | $[4, 2, -w]$ | $-1$ |
| 4 | $[4, 2, \frac{1}{2}w^{3} - \frac{1}{2}w^{2} - \frac{5}{2}w + 1]$ | $-1$ |
| 19 | $[19, 19, \frac{1}{2}w^{3} - \frac{3}{2}w^{2} - \frac{1}{2}w + 4]$ | $\phantom{-}5$ |
| 19 | $[19, 19, \frac{1}{2}w^{3} + \frac{1}{2}w^{2} - \frac{5}{2}w - 1]$ | $-5$ |
| 25 | $[25, 5, w^{3} - w^{2} - 3w + 1]$ | $\phantom{-}6$ |
| 29 | $[29, 29, -\frac{1}{2}w^{3} + \frac{3}{2}w^{2} + \frac{3}{2}w - 1]$ | $\phantom{-}0$ |
| 29 | $[29, 29, -w^{2} + 5]$ | $-10$ |
| 31 | $[31, 31, -w^{3} + 2w^{2} + 3w - 3]$ | $\phantom{-}2$ |
| 31 | $[31, 31, -\frac{1}{2}w^{3} - \frac{1}{2}w^{2} + \frac{3}{2}w + 3]$ | $\phantom{-}1$ |
| 41 | $[41, 41, -\frac{1}{2}w^{3} - \frac{1}{2}w^{2} + \frac{5}{2}w]$ | $\phantom{-}2$ |
| 41 | $[41, 41, -\frac{1}{2}w^{3} + \frac{3}{2}w^{2} + \frac{1}{2}w - 5]$ | $\phantom{-}7$ |
| 59 | $[59, 59, w^{3} - w^{2} - 5w + 1]$ | $\phantom{-}10$ |
| 59 | $[59, 59, \frac{3}{2}w^{3} - \frac{1}{2}w^{2} - \frac{11}{2}w - 1]$ | $-10$ |
| 61 | $[61, 61, \frac{3}{2}w^{3} - \frac{1}{2}w^{2} - \frac{11}{2}w - 2]$ | $-13$ |
| 61 | $[61, 61, -2w^{2} + w + 7]$ | $-3$ |
| 71 | $[71, 71, \frac{1}{2}w^{3} - \frac{3}{2}w^{2} - \frac{5}{2}w + 6]$ | $-13$ |
| 71 | $[71, 71, -\frac{1}{2}w^{3} + \frac{5}{2}w^{2} - \frac{1}{2}w - 5]$ | $-8$ |
| 71 | $[71, 71, \frac{1}{2}w^{3} + \frac{3}{2}w^{2} - \frac{7}{2}w - 5]$ | $-3$ |
| 71 | $[71, 71, -w^{3} + 3w^{2} + 2w - 7]$ | $-13$ |
| 81 | $[81, 3, -3]$ | $\phantom{-}7$ |
Atkin-Lehner eigenvalues
| Norm | Prime | Eigenvalue |
|---|---|---|
| 4 | $[4,2,-\frac{1}{2}w^{3} + \frac{1}{2}w^{2} + \frac{5}{2}w - 1]$ | $1$ |
| 4 | $[4,2,w]$ | $1$ |
| 31 | $[31,31,-\frac{1}{2}w^{3} - \frac{1}{2}w^{2} + \frac{3}{2}w + 3]$ | $-1$ |