Properties

Base field 4.4.19225.1
Weight [2, 2, 2, 2]
Level norm 16
Level $[16, 4, w^{3} - 3w^{2} - 8w + 16]$
Label 4.4.19225.1-16.2-a
Dimension 2
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 4.4.19225.1

Generator \(w\), with minimal polynomial \(x^{4} - x^{3} - 15x^{2} + 2x + 44\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2, 2, 2]
Level $[16, 4, w^{3} - 3w^{2} - 8w + 16]$
Label 4.4.19225.1-16.2-a
Dimension 2
Is CM no
Is base change no
Parent newspace dimension 26

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{2} - x - 7\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, w + 2]$ $\phantom{-}0$
4 $[4, 2, -\frac{1}{2}w^{3} + \frac{3}{2}w^{2} + \frac{9}{2}w - 10]$ $\phantom{-}e$
9 $[9, 3, \frac{1}{2}w^{3} - \frac{5}{2}w^{2} - \frac{5}{2}w + 17]$ $\phantom{-}3$
9 $[9, 3, \frac{3}{2}w^{3} - \frac{11}{2}w^{2} - \frac{19}{2}w + 28]$ $-3$
11 $[11, 11, \frac{1}{2}w^{3} - \frac{3}{2}w^{2} - \frac{9}{2}w + 11]$ $-e + 1$
11 $[11, 11, -w - 3]$ $\phantom{-}e + 1$
25 $[25, 5, w^{3} - 3w^{2} - 7w + 15]$ $\phantom{-}e + 4$
29 $[29, 29, w + 1]$ $\phantom{-}2e - 2$
29 $[29, 29, \frac{1}{2}w^{3} - \frac{3}{2}w^{2} - \frac{9}{2}w + 9]$ $-2e + 6$
31 $[31, 31, -\frac{1}{2}w^{3} + \frac{5}{2}w^{2} + \frac{5}{2}w - 16]$ $-2e - 3$
31 $[31, 31, \frac{1}{2}w^{3} - \frac{3}{2}w^{2} - \frac{9}{2}w + 5]$ $-2e - 1$
31 $[31, 31, -w + 3]$ $-3$
31 $[31, 31, \frac{3}{2}w^{3} - \frac{11}{2}w^{2} - \frac{19}{2}w + 29]$ $\phantom{-}5$
59 $[59, 59, 2w^{2} - w - 13]$ $-2e + 7$
59 $[59, 59, \frac{9}{2}w^{3} - \frac{31}{2}w^{2} - \frac{61}{2}w + 85]$ $\phantom{-}5$
61 $[61, 61, 2w^{3} - 6w^{2} - 15w + 31]$ $\phantom{-}e + 9$
61 $[61, 61, -\frac{3}{2}w^{3} + \frac{11}{2}w^{2} + \frac{21}{2}w - 34]$ $-e - 1$
71 $[71, 71, \frac{3}{2}w^{3} - \frac{11}{2}w^{2} - \frac{19}{2}w + 32]$ $-e - 2$
71 $[71, 71, -\frac{1}{2}w^{3} + \frac{5}{2}w^{2} + \frac{5}{2}w - 13]$ $-e + 8$
79 $[79, 79, -3w^{3} + 10w^{2} + 19w - 51]$ $-5e + 6$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, w + 2]$ $1$