Properties

Label 4.4.17609.1-5.1-a
Base field 4.4.17609.1
Weight $[2, 2, 2, 2]$
Level norm $5$
Level $[5, 5, w^3 + w^2 - 4 w + 1]$
Dimension $6$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 4.4.17609.1

Generator \(w\), with minimal polynomial \(x^4 - x^3 - 7 x^2 + 10 x - 1\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[5, 5, w^3 + w^2 - 4 w + 1]$
Dimension: $6$
CM: no
Base change: no
Newspace dimension: $6$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^6 - 10 x^4 + 21 x^2 - 4\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -w + 1]$ $\phantom{-}e$
5 $[5, 5, w^3 + w^2 - 4 w + 1]$ $-1$
7 $[7, 7, -w^3 + 6 w - 2]$ $\phantom{-}\frac{1}{2} e^5 - \frac{9}{2} e^3 + 8 e$
8 $[8, 2, w^3 - 7 w + 3]$ $-\frac{1}{2} e^3 + \frac{7}{2} e$
11 $[11, 11, -w^3 + 6 w - 4]$ $\phantom{-}\frac{1}{2} e^5 - 5 e^3 + \frac{21}{2} e$
17 $[17, 17, w^3 + w^2 - 6 w - 1]$ $\phantom{-}\frac{1}{2} e^4 - \frac{11}{2} e^2 + 9$
17 $[17, 17, -w^2 - w + 3]$ $-\frac{1}{2} e^5 + \frac{9}{2} e^3 - 6 e$
31 $[31, 31, 2 w^3 + w^2 - 13 w + 3]$ $-e^5 + \frac{19}{2} e^3 - \frac{33}{2} e$
37 $[37, 37, -3 w^3 - w^2 + 18 w - 3]$ $-\frac{3}{2} e^5 + 14 e^3 - \frac{45}{2} e$
41 $[41, 41, w^2 + 2 w - 4]$ $\phantom{-}e^3 - 5 e$
47 $[47, 47, 2 w^3 + 2 w^2 - 11 w - 2]$ $\phantom{-}\frac{3}{2} e^4 - \frac{27}{2} e^2 + 14$
47 $[47, 47, -3 w^3 - w^2 + 19 w - 6]$ $\phantom{-}\frac{1}{2} e^5 - 6 e^3 + \frac{39}{2} e$
59 $[59, 59, -2 w^3 + 13 w - 6]$ $-e^5 + 10 e^3 - 23 e$
59 $[59, 59, -w^3 - w^2 + 5 w + 2]$ $-\frac{3}{2} e^4 + \frac{17}{2} e^2 + 3$
59 $[59, 59, w^2 + w - 1]$ $\phantom{-}\frac{1}{2} e^5 - 3 e^3 + \frac{1}{2} e$
59 $[59, 59, w^2 + 2 w - 6]$ $-2 e^2 + 8$
61 $[61, 61, -w^3 + w^2 + 8 w - 7]$ $\phantom{-}e^5 - 8 e^3 + 7 e$
67 $[67, 67, w^3 + 2 w^2 - 4 w - 4]$ $\phantom{-}0$
73 $[73, 73, -2 w^3 - w^2 + 12 w - 4]$ $-2 e^5 + 16 e^3 - 18 e$
81 $[81, 3, -3]$ $-2 e^2 + 8$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$5$ $[5, 5, w^3 + w^2 - 4 w + 1]$ $1$