Properties

Label 4.4.14400.1-20.2-b
Base field \(\Q(\sqrt{5}, \sqrt{6})\)
Weight $[2, 2, 2, 2]$
Level norm $20$
Level $[20,10,-\frac{2}{19} w^3 + \frac{3}{19} w^2 - \frac{1}{19} w - 1]$
Dimension $1$
CM no
Base change yes

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{5}, \sqrt{6})\)

Generator \(w\), with minimal polynomial \(x^4 - 2 x^3 - 13 x^2 + 14 x + 19\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[20,10,-\frac{2}{19} w^3 + \frac{3}{19} w^2 - \frac{1}{19} w - 1]$
Dimension: $1$
CM: no
Base change: yes
Newspace dimension: $20$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
4 $[4, 2, -\frac{2}{19} w^3 + \frac{3}{19} w^2 + \frac{37}{19} w - 3]$ $\phantom{-}1$
5 $[5, 5, \frac{3}{19} w^3 + \frac{5}{19} w^2 - \frac{27}{19} w - 1]$ $-3$
5 $[5, 5, -\frac{3}{19} w^3 + \frac{14}{19} w^2 + \frac{8}{19} w - 2]$ $-1$
9 $[9, 3, -\frac{2}{19} w^3 + \frac{3}{19} w^2 + \frac{37}{19} w - 4]$ $\phantom{-}3$
19 $[19, 19, -w]$ $\phantom{-}1$
19 $[19, 19, \frac{4}{19} w^3 - \frac{6}{19} w^2 - \frac{55}{19} w + 1]$ $\phantom{-}1$
19 $[19, 19, \frac{4}{19} w^3 - \frac{6}{19} w^2 - \frac{55}{19} w + 2]$ $-2$
19 $[19, 19, w - 1]$ $-2$
29 $[29, 29, -\frac{5}{19} w^3 - \frac{2}{19} w^2 + \frac{64}{19} w + 2]$ $-9$
29 $[29, 29, \frac{10}{19} w^3 - \frac{34}{19} w^2 - \frac{71}{19} w + 9]$ $-9$
29 $[29, 29, \frac{4}{19} w^3 - \frac{6}{19} w^2 - \frac{55}{19} w + 4]$ $\phantom{-}6$
29 $[29, 29, -w + 3]$ $\phantom{-}6$
49 $[49, 7, \frac{5}{19} w^3 - \frac{17}{19} w^2 - \frac{64}{19} w + 11]$ $-8$
49 $[49, 7, \frac{6}{19} w^3 - \frac{9}{19} w^2 - \frac{92}{19} w - 1]$ $-8$
71 $[71, 71, \frac{3}{19} w^3 + \frac{5}{19} w^2 - \frac{46}{19} w - 1]$ $-3$
71 $[71, 71, \frac{6}{19} w^3 - \frac{9}{19} w^2 - \frac{73}{19} w]$ $-3$
71 $[71, 71, \frac{6}{19} w^3 - \frac{9}{19} w^2 - \frac{73}{19} w + 4]$ $\phantom{-}0$
71 $[71, 71, -\frac{3}{19} w^3 + \frac{14}{19} w^2 + \frac{27}{19} w - 3]$ $\phantom{-}0$
101 $[101, 101, \frac{7}{19} w^3 - \frac{1}{19} w^2 - \frac{63}{19} w - 3]$ $\phantom{-}0$
101 $[101, 101, -\frac{9}{19} w^3 + \frac{23}{19} w^2 + \frac{81}{19} w - 5]$ $-6$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4,2,\frac{2}{19} w^3 - \frac{3}{19} w^2 - \frac{37}{19} w - 1]$ $-1$
$5$ $[5,5,-\frac{3}{19} w^3 + \frac{14}{19} w^2 + \frac{8}{19} w - 2]$ $1$