Properties

Base field 4.4.13968.1
Weight [2, 2, 2, 2]
Level norm 4
Level $[4, 2, -\frac{1}{2}w^{2} + \frac{1}{2}w + 3]$
Label 4.4.13968.1-4.2-c
Dimension 1
CM no
Base change yes

Related objects

Downloads

Learn more about

Base field 4.4.13968.1

Generator \(w\), with minimal polynomial \(x^{4} - 2x^{3} - 7x^{2} + 8x + 4\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2, 2, 2]
Level $[4, 2, -\frac{1}{2}w^{2} + \frac{1}{2}w + 3]$
Label 4.4.13968.1-4.2-c
Dimension 1
Is CM no
Is base change yes
Parent newspace dimension 6

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, \frac{1}{2}w^{2} + \frac{1}{2}w - 1]$ $\phantom{-}1$
2 $[2, 2, -\frac{1}{2}w^{2} + \frac{3}{2}w]$ $\phantom{-}1$
9 $[9, 3, -\frac{1}{2}w^{2} + \frac{1}{2}w + 2]$ $\phantom{-}0$
13 $[13, 13, \frac{1}{2}w^{3} - w^{2} - \frac{5}{2}w + 2]$ $\phantom{-}4$
13 $[13, 13, -\frac{1}{2}w^{3} + \frac{1}{2}w^{2} + 3w - 1]$ $\phantom{-}4$
23 $[23, 23, \frac{1}{2}w^{3} - w^{2} - \frac{5}{2}w]$ $-6$
23 $[23, 23, -\frac{1}{2}w^{3} + \frac{1}{2}w^{2} + 3w - 3]$ $-6$
37 $[37, 37, \frac{1}{2}w^{3} - \frac{1}{2}w^{2} - 3w - 3]$ $-2$
37 $[37, 37, \frac{1}{2}w^{3} - w^{2} - \frac{5}{2}w + 6]$ $-2$
59 $[59, 59, -\frac{1}{2}w^{3} + \frac{7}{2}w]$ $\phantom{-}0$
59 $[59, 59, -\frac{1}{2}w^{3} + \frac{3}{2}w^{2} + 2w - 3]$ $\phantom{-}0$
61 $[61, 61, -w^{3} + 2w^{2} + 7w - 7]$ $\phantom{-}2$
61 $[61, 61, w^{3} - w^{2} - 6w + 3]$ $-8$
61 $[61, 61, w^{3} - 2w^{2} - 5w + 3]$ $-8$
61 $[61, 61, w^{3} - w^{2} - 8w + 1]$ $\phantom{-}2$
71 $[71, 71, -\frac{1}{2}w^{3} + \frac{1}{2}w^{2} + 5w - 5]$ $\phantom{-}12$
71 $[71, 71, -w^{3} + \frac{3}{2}w^{2} + \frac{15}{2}w - 6]$ $\phantom{-}12$
83 $[83, 83, -\frac{1}{2}w^{3} + \frac{3}{2}w^{2} + 2w - 7]$ $-6$
83 $[83, 83, \frac{1}{2}w^{3} - \frac{7}{2}w - 4]$ $-6$
97 $[97, 97, 2w - 1]$ $-2$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, \frac{1}{2}w^{2} + \frac{1}{2}w - 1]$ $-1$
2 $[2, 2, -\frac{1}{2}w^{2} + \frac{3}{2}w]$ $-1$