Properties

Base field 3.3.940.1
Weight [2, 2, 2]
Level norm 16
Level $[16, 8, -w^{2} + w + 4]$
Label 3.3.940.1-16.4-d
Dimension 1
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 3.3.940.1

Generator \(w\), with minimal polynomial \(x^{3} - 7x - 4\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2, 2]
Level $[16, 8, -w^{2} + w + 4]$
Label 3.3.940.1-16.4-d
Dimension 1
Is CM no
Is base change no
Parent newspace dimension 6

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w - 2]$ $\phantom{-}0$
2 $[2, 2, -w - 1]$ $-1$
5 $[5, 5, -w^{2} + w + 7]$ $-2$
5 $[5, 5, -w^{2} + w + 5]$ $\phantom{-}2$
17 $[17, 17, -w^{2} + 3w + 1]$ $-6$
23 $[23, 23, -w^{2} + w + 3]$ $\phantom{-}4$
27 $[27, 3, 3]$ $-4$
29 $[29, 29, -w^{2} + 3w - 1]$ $-2$
37 $[37, 37, w^{2} + w + 1]$ $\phantom{-}10$
41 $[41, 41, w^{2} - w - 9]$ $\phantom{-}6$
43 $[43, 43, -3w^{2} + 3w + 17]$ $-4$
47 $[47, 47, 2w^{2} - 2w - 13]$ $-8$
47 $[47, 47, -2w + 5]$ $\phantom{-}0$
53 $[53, 53, 3w^{2} - w - 19]$ $\phantom{-}6$
59 $[59, 59, 2w - 1]$ $\phantom{-}12$
67 $[67, 67, w^{2} + w - 5]$ $-12$
71 $[71, 71, -3w^{2} + w + 21]$ $\phantom{-}8$
79 $[79, 79, 3w^{2} - w - 23]$ $-12$
89 $[89, 89, 2w^{2} - 4w - 7]$ $\phantom{-}6$
89 $[89, 89, -2w^{2} - 2w + 5]$ $\phantom{-}18$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -w - 2]$ $-1$
2 $[2, 2, -w - 1]$ $1$