/* This code can be loaded, or copied and paste using cpaste, into Sage. It will load the data associated to the HMF, including the field, level, and Hecke and Atkin-Lehner eigenvalue data. */ P. = PolynomialRing(QQ) g = P([5, -6, -1, 1]) F. = NumberField(g) ZF = F.ring_of_integers() NN = ZF.ideal([17, 17, -w^2 + w + 3]) primes_array = [ [3, 3, w - 2],\ [5, 5, w],\ [5, 5, -w + 3],\ [8, 2, 2],\ [9, 3, w^2 + w - 4],\ [13, 13, w + 3],\ [17, 17, -w^2 + w + 3],\ [23, 23, w^2 - 2],\ [23, 23, w^2 - 3],\ [23, 23, -w^2 + 8],\ [29, 29, w - 4],\ [37, 37, w^2 + w - 8],\ [41, 41, w^2 + 2*w - 4],\ [47, 47, 2*w^2 + w - 8],\ [59, 59, -2*w^2 - 3*w + 6],\ [61, 61, -2*w - 1],\ [67, 67, -2*w - 3],\ [79, 79, 2*w^2 - 9],\ [109, 109, w^2 + 2*w - 6],\ [109, 109, 2*w^2 + w - 14],\ [109, 109, -w^2 - w - 1],\ [113, 113, 2*w^2 + w - 12],\ [127, 127, w^2 - 3*w - 2],\ [131, 131, -4*w^2 - 5*w + 9],\ [137, 137, w^2 + 2*w - 7],\ [137, 137, 3*w + 8],\ [137, 137, 2*w^2 + w - 17],\ [139, 139, 3*w^2 + 2*w - 11],\ [149, 149, w - 6],\ [151, 151, w^2 + 2*w - 9],\ [157, 157, -w^2 - 2*w + 13],\ [157, 157, 2*w^2 - 7],\ [163, 163, w^2 + 3*w + 3],\ [163, 163, 2*w^2 - 3*w - 3],\ [163, 163, 2*w^2 - w - 7],\ [167, 167, 3*w^2 + w - 13],\ [169, 13, 2*w^2 + 5*w - 1],\ [173, 173, w^2 + 2*w + 2],\ [179, 179, 4*w^2 + 2*w - 19],\ [181, 181, w^2 + 3*w - 6],\ [191, 191, 3*w^2 + 2*w - 14],\ [193, 193, w^2 - 3*w - 3],\ [197, 197, 3*w^2 - 2*w - 13],\ [211, 211, -w - 6],\ [223, 223, -w^2 + w - 3],\ [223, 223, -3*w - 2],\ [223, 223, 2*w^2 - 2*w - 3],\ [229, 229, 2*w^2 - w - 4],\ [233, 233, 2*w + 7],\ [239, 239, -3*w - 4],\ [239, 239, w^2 - 11],\ [239, 239, 4*w^2 - w - 21],\ [241, 241, 3*w^2 + w - 19],\ [251, 251, -w^2 - 4*w - 1],\ [257, 257, w - 7],\ [263, 263, 3*w^2 + w - 12],\ [269, 269, 3*w^2 - 4*w - 11],\ [271, 271, 4*w^2 + 6*w - 11],\ [277, 277, -4*w^2 - 3*w + 17],\ [283, 283, 5*w^2 + 4*w - 18],\ [289, 17, 3*w^2 + 2*w - 9],\ [307, 307, -2*w^2 - w + 18],\ [307, 307, w^2 + 2*w + 3],\ [307, 307, -w^2 - 3],\ [313, 313, 3*w^2 - 13],\ [317, 317, 3*w^2 - 2*w - 12],\ [331, 331, w^2 + 3*w - 9],\ [331, 331, w^2 + 3*w - 11],\ [331, 331, w^2 + 3*w + 4],\ [343, 7, -7],\ [347, 347, 2*w^2 + 2*w - 13],\ [353, 353, 4*w^2 + 5*w - 13],\ [359, 359, 3*w^2 + 6*w - 1],\ [379, 379, w^2 - 3*w - 6],\ [383, 383, 3*w^2 - 23],\ [383, 383, w^2 - 12],\ [383, 383, 3*w^2 + 3*w - 13],\ [401, 401, -6*w^2 - 7*w + 16],\ [409, 409, -4*w^2 + 3*w + 21],\ [421, 421, w^2 - 3*w - 9],\ [433, 433, w^2 - 3*w - 8],\ [433, 433, w^2 + 4*w - 8],\ [433, 433, 3*w^2 - w - 12],\ [439, 439, -4*w - 11],\ [449, 449, 2*w^2 + 3*w - 19],\ [457, 457, w^2 - 4*w - 3],\ [461, 461, 5*w^2 + 6*w - 16],\ [461, 461, -2*w^2 + 3*w + 16],\ [461, 461, 2*w^2 + 4*w - 9],\ [467, 467, 3*w^2 - 4*w - 12],\ [479, 479, 3*w^2 + w - 9],\ [487, 487, 5*w^2 + 2*w - 22],\ [491, 491, 3*w^2 - 11],\ [499, 499, 5*w^2 + w - 24],\ [503, 503, 3*w^2 + 2*w - 17],\ [503, 503, 3*w^2 + w - 7],\ [503, 503, 2*w^2 - 4*w - 7],\ [509, 509, 3*w - 11],\ [521, 521, 3*w^2 - 3*w - 16],\ [523, 523, -w - 8],\ [541, 541, 6*w^2 + 7*w - 19],\ [547, 547, 3*w^2 + 4*w - 12],\ [557, 557, 2*w^2 - 3*w - 12],\ [563, 563, 4*w^2 + 3*w - 12],\ [563, 563, 4*w^2 + w - 17],\ [563, 563, -w^2 - 5*w - 3],\ [569, 569, w^2 - 4*w - 4],\ [577, 577, w^2 - w - 13],\ [587, 587, 4*w^2 + 3*w - 8],\ [587, 587, 2*w^2 - 3*w - 13],\ [587, 587, 2*w^2 + 3*w - 18],\ [593, 593, 4*w - 13],\ [599, 599, w - 9],\ [613, 613, -w^2 + 3*w - 7],\ [613, 613, w^2 + 5*w + 2],\ [613, 613, 3*w^2 - 3*w - 17],\ [617, 617, w^2 + 5*w + 8],\ [641, 641, 4*w^2 + 3*w - 11],\ [641, 641, w^2 + w - 14],\ [641, 641, 3*w^2 - 2*w - 9],\ [647, 647, 2*w^2 + 3*w - 13],\ [653, 653, 3*w^2 - 8],\ [659, 659, 5*w^2 + 4*w - 21],\ [659, 659, 2*w^2 - 4*w - 19],\ [659, 659, -2*w^2 - 6*w + 9],\ [677, 677, -6*w - 13],\ [691, 691, 6*w - 11],\ [701, 701, 3*w^2 - 3*w - 19],\ [719, 719, 2*w^2 + 3*w - 16],\ [727, 727, 3*w^2 + 4*w - 13],\ [733, 733, 3*w^2 - w - 8],\ [739, 739, 2*w^2 + 4*w - 11],\ [739, 739, 4*w^2 - 3*w - 24],\ [739, 739, 3*w^2 - w - 6],\ [743, 743, 4*w^2 - 2*w - 17],\ [751, 751, -w - 9],\ [761, 761, 5*w^2 + 5*w - 19],\ [769, 769, w^2 - 4*w - 6],\ [769, 769, -5*w - 1],\ [769, 769, 2*w^2 - 19],\ [773, 773, 2*w^2 - 6*w - 3],\ [797, 797, 4*w^2 - 17],\ [809, 809, -7*w^2 - 4*w + 29],\ [811, 811, 6*w^2 + 3*w - 29],\ [823, 823, 4*w^2 + 2*w - 13],\ [823, 823, -w^2 - 4*w - 7],\ [823, 823, 4*w^2 + 4*w - 17],\ [827, 827, -2*w^2 - 3*w - 2],\ [829, 829, -w^2 + w - 6],\ [829, 829, -w^2 + 4*w - 9],\ [829, 829, -2*w^2 + 3*w + 21],\ [839, 839, 6*w^2 - 2*w - 31],\ [841, 29, w^2 + 3*w + 6],\ [853, 853, -7*w^2 - 6*w + 27],\ [859, 859, 6*w - 1],\ [881, 881, w^2 + 5*w - 16],\ [907, 907, 2*w^2 + 7*w + 7],\ [919, 919, w^2 - 4*w - 9],\ [953, 953, -4*w^2 - w + 32],\ [967, 967, 5*w^2 - 5*w - 18],\ [971, 971, 3*w^2 - 4*w - 24],\ [977, 977, 2*w^2 + 4*w + 3],\ [997, 997, w^2 + 5*w - 12],\ [997, 997, 5*w^2 - 3*w - 22],\ [997, 997, 3*w^2 + 8*w - 2]] primes = [ZF.ideal(I) for I in primes_array] heckePol = x^6 - 5*x^5 - 2*x^4 + 31*x^3 - 2*x^2 - 54*x - 13 K. = NumberField(heckePol) hecke_eigenvalues_array = [e, -e^2 + 2*e + 3, 1/2*e^5 - 2*e^4 - e^3 + 15/2*e^2 + 1/2*e - 5/2, -e + 2, -1/2*e^5 + e^4 + 5*e^3 - 9/2*e^2 - 31/2*e - 5/2, -e^4 + 4*e^3 + e^2 - 12*e + 2, 1, -e^3 + 2*e^2 + 3*e, -e^4 + 3*e^3 + 4*e^2 - 9*e - 6, e^5 - 2*e^4 - 10*e^3 + 8*e^2 + 31*e + 10, -e^5 + 4*e^4 + 2*e^3 - 13*e^2 - 3*e + 1, 2*e^4 - 7*e^3 - 7*e^2 + 24*e + 12, e^3 - e^2 - 5*e + 3, -1/2*e^5 + 3*e^4 - 2*e^3 - 21/2*e^2 + 17/2*e + 9/2, -e^5 + 4*e^4 + 2*e^3 - 15*e^2 - e + 11, -e^5 + 2*e^4 + 9*e^3 - 8*e^2 - 24*e - 9, e^5 - 4*e^4 - 2*e^3 + 16*e^2 - e - 12, -1/2*e^5 - e^4 + 13*e^3 - 5/2*e^2 - 73/2*e - 3/2, e^4 - 3*e^3 - 5*e^2 + 10*e + 9, 2*e^5 - 9*e^4 + 2*e^3 + 27*e^2 - 19*e - 8, 3*e^3 - 9*e^2 - 7*e + 13, -1/2*e^5 - e^4 + 12*e^3 - 5/2*e^2 - 65/2*e + 7/2, 1/2*e^5 + e^4 - 13*e^3 + 3/2*e^2 + 83/2*e + 15/2, 3*e^4 - 10*e^3 - 13*e^2 + 32*e + 29, -1/2*e^5 - e^4 + 11*e^3 + 11/2*e^2 - 75/2*e - 33/2, -2*e^5 + 10*e^4 - 4*e^3 - 33*e^2 + 24*e + 17, e^5 - e^4 - 12*e^3 + 3*e^2 + 35*e + 16, -e^3 - 2*e^2 + 11*e + 16, 2*e^5 - 4*e^4 - 21*e^3 + 24*e^2 + 55*e - 2, -e^5 + 4*e^4 + 4*e^3 - 19*e^2 - 6*e + 4, -1/2*e^5 + 3*e^4 - 5*e^3 - 19/2*e^2 + 57/2*e + 25/2, -3*e^5 + 11*e^4 + 11*e^3 - 40*e^2 - 25*e - 1, -e^4 + 3*e^3 + 8*e^2 - 16*e - 12, 1/2*e^5 - e^4 - 2*e^3 - 5/2*e^2 + 7/2*e + 25/2, -e^5 + 2*e^4 + 5*e^3 - 9*e - 15, 2*e^5 - 5*e^4 - 17*e^3 + 20*e^2 + 46*e + 28, -e^5 + 3*e^4 + 8*e^3 - 19*e^2 - 19*e + 8, -e^5 - 2*e^4 + 24*e^3 + 6*e^2 - 81*e - 38, -e^4 + 11*e^2 - 2*e - 18, 3*e^5 - 6*e^4 - 30*e^3 + 32*e^2 + 83*e + 8, 2*e^4 - 7*e^3 - 13*e^2 + 37*e + 23, -2*e^5 + 6*e^4 + 12*e^3 - 21*e^2 - 30*e - 13, -2*e^5 + 4*e^4 + 16*e^3 - 8*e^2 - 50*e - 35, 3*e^2 - 8*e - 13, -3/2*e^5 + e^4 + 20*e^3 - 9/2*e^2 - 111/2*e - 53/2, -e^5 - e^4 + 25*e^3 - 8*e^2 - 79*e - 15, 2*e^5 - 5*e^4 - 16*e^3 + 22*e^2 + 38*e + 9, 2*e^5 - 2*e^4 - 26*e^3 + 12*e^2 + 76*e + 16, -e^5 - e^4 + 21*e^3 - 6*e^2 - 56*e - 5, -2*e^5 + 6*e^4 + 12*e^3 - 19*e^2 - 37*e - 26, -7*e^4 + 24*e^3 + 21*e^2 - 74*e - 28, -e^5 + 5*e^4 - 25*e^2 + 12*e + 28, 3/2*e^5 - e^4 - 23*e^3 + 17/2*e^2 + 145/2*e + 49/2, -3*e^5 + 12*e^4 + 3*e^3 - 32*e^2 + e - 15, 6*e^4 - 22*e^3 - 12*e^2 + 65*e + 7, -3*e^5 + 14*e^4 + e^3 - 52*e^2 + 8*e + 26, 7/2*e^5 - 11*e^4 - 18*e^3 + 79/2*e^2 + 77/2*e + 33/2, -e^5 + 3*e^4 + 4*e^3 - 11*e^2 - 7*e + 14, -e^5 + 4*e^4 + 3*e^3 - 19*e^2 - 2*e + 13, -e^5 + 3*e^4 + 6*e^3 - 8*e^2 - 17*e - 11, e^3 + 3*e^2 - 13*e - 1, e^5 + e^4 - 20*e^3 - e^2 + 65*e + 20, 2*e^5 - 11*e^4 + 8*e^3 + 32*e^2 - 36*e - 13, 3*e^5 - 7*e^4 - 24*e^3 + 28*e^2 + 61*e + 15, -2*e^5 + 8*e^4 + 3*e^3 - 24*e^2 - 7*e - 16, 4*e^4 - 17*e^3 - 11*e^2 + 60*e + 32, 3*e^5 - 11*e^4 - 9*e^3 + 33*e^2 + 22*e + 14, 4*e^5 - 15*e^4 - 16*e^3 + 65*e^2 + 28*e - 30, e^5 - 19*e^3 + 11*e^2 + 52*e - 3, -1/2*e^5 + 2*e^4 - 2*e^3 + 11/2*e^2 + 11/2*e - 35/2, e^5 + e^4 - 23*e^3 + 7*e^2 + 68*e + 2, -2*e^5 + 8*e^4 - 2*e^3 - 13*e^2 + 14*e - 15, -3/2*e^5 + e^4 + 25*e^3 - 29/2*e^2 - 157/2*e - 5/2, e^5 - e^4 - 12*e^3 + 10*e^2 + 29*e - 17, -2*e^5 + 9*e^4 + 4*e^3 - 40*e^2 - 2*e + 25, e^5 - 3*e^4 - 4*e^3 + 8*e^2 + 11*e + 3, -e^5 + 9*e^4 - 17*e^3 - 24*e^2 + 66*e + 15, -3*e^5 + 2*e^4 + 40*e^3 - 2*e^2 - 133*e - 57, -4*e^5 + 12*e^4 + 23*e^3 - 44*e^2 - 57*e - 8, 4*e^4 - 15*e^3 - 16*e^2 + 49*e + 44, -3*e^4 + 10*e^3 + 8*e^2 - 28*e - 15, 1/2*e^5 - 8*e^4 + 23*e^3 + 39/2*e^2 - 147/2*e - 41/2, -2*e^5 + 9*e^4 + 2*e^3 - 37*e^2 + 8*e + 38, 5/2*e^5 - 9*e^4 - 9*e^3 + 87/2*e^2 + 5/2*e - 79/2, 5*e^5 - 16*e^4 - 24*e^3 + 56*e^2 + 52*e + 23, -2*e^5 + 9*e^4 - e^3 - 24*e^2 + 9*e - 13, 5*e^5 - 13*e^4 - 39*e^3 + 54*e^2 + 112*e + 19, 5*e^5 - 14*e^4 - 31*e^3 + 50*e^2 + 84*e + 16, e^5 - 3*e^4 - 6*e^3 + 13*e^2 + 19*e - 2, 3*e^5 - 8*e^4 - 18*e^3 + 22*e^2 + 51*e + 40, 3*e^5 - 8*e^4 - 25*e^3 + 43*e^2 + 60*e - 15, -2*e^5 + e^4 + 29*e^3 - 5*e^2 - 97*e - 32, 1/2*e^5 + 5*e^4 - 31*e^3 - 5/2*e^2 + 207/2*e + 15/2, 4*e^5 - 9*e^4 - 36*e^3 + 38*e^2 + 104*e + 21, 3*e^5 - 14*e^4 - 2*e^3 + 48*e^2 - 3*e + 3, -1/2*e^5 + 8*e^4 - 20*e^3 - 41/2*e^2 + 119/2*e + 49/2, -2*e^5 + 14*e^4 - 17*e^3 - 48*e^2 + 66*e + 54, 7/2*e^5 - 12*e^4 - 10*e^3 + 55/2*e^2 + 37/2*e + 83/2, -2*e^5 + 2*e^4 + 27*e^3 - 8*e^2 - 83*e - 46, 3*e^5 - 3*e^4 - 39*e^3 + 19*e^2 + 110*e + 27, -13/2*e^5 + 23*e^4 + 25*e^3 - 171/2*e^2 - 95/2*e + 17/2, -3*e^5 + 5*e^4 + 37*e^3 - 30*e^2 - 116*e - 8, -1/2*e^5 + 8*e^4 - 20*e^3 - 47/2*e^2 + 133/2*e + 21/2, e^5 - 5*e^4 - 2*e^3 + 28*e^2 + 5*e - 37, e^5 - 8*e^4 + 18*e^3 + 9*e^2 - 60*e + 15, -3/2*e^5 + 4*e^4 + 8*e^3 - 7/2*e^2 - 61/2*e - 67/2, e^5 + 2*e^4 - 25*e^3 + 9*e^2 + 72*e - 29, -6*e^5 + 21*e^4 + 24*e^3 - 67*e^2 - 62*e - 36, -3*e^5 + 8*e^4 + 24*e^3 - 27*e^2 - 85*e - 21, -2*e^5 + 9*e^4 + 5*e^3 - 41*e^2 + 8, -9/2*e^5 + 13*e^4 + 31*e^3 - 115/2*e^2 - 159/2*e - 11/2, 2*e^5 - 9*e^4 - 3*e^3 + 30*e^2 + 13*e + 15, 5*e^5 - 19*e^4 - 13*e^3 + 60*e^2 + 28*e + 27, 4*e^5 - 12*e^4 - 24*e^3 + 53*e^2 + 54*e - 15, 7*e^4 - 23*e^3 - 26*e^2 + 71*e + 63, e^5 - 7*e^4 + 14*e^3 + 6*e^2 - 40*e + 22, 3*e^5 - 12*e^4 - 2*e^3 + 31*e^2 - 3*e + 9, -7/2*e^5 + 12*e^4 + 14*e^3 - 79/2*e^2 - 85/2*e - 3/2, 2*e^5 - 12*e^4 + 9*e^3 + 43*e^2 - 47*e - 37, -5*e^5 + 16*e^4 + 28*e^3 - 69*e^2 - 60*e + 19, -2*e^5 + 17*e^4 - 29*e^3 - 47*e^2 + 95*e + 22, 2*e^5 - 9*e^4 - 4*e^3 + 38*e^2 - 6*e - 1, e^5 - 6*e^4 + 6*e^3 + 26*e^2 - 35*e - 60, e^5 - 9*e^4 + 11*e^3 + 34*e^2 - 27*e - 25, -3*e^5 + 16*e^4 - 7*e^3 - 54*e^2 + 33*e + 13, -2*e^5 + 17*e^4 - 32*e^3 - 51*e^2 + 126*e + 63, -9/2*e^5 + 19*e^4 + 10*e^3 - 147/2*e^2 - 19/2*e + 51/2, 3*e^5 - 15*e^4 + 3*e^3 + 47*e^2 - 16*e + 18, -6*e^5 + 24*e^4 + 16*e^3 - 88*e^2 - 38*e + 24, -2*e^5 + e^4 + 31*e^3 - 6*e^2 - 100*e - 46, 3*e^4 - 8*e^3 - 18*e^2 + 36*e + 17, -e^5 + 5*e^4 - 7*e^3 - 9*e^2 + 37*e + 4, 11*e^4 - 42*e^3 - 31*e^2 + 147*e + 69, e^5 - 3*e^4 - 2*e^3 + 7*e^2 - 5*e - 8, 2*e^5 - 8*e^4 - 7*e^3 + 35*e^2 + 3*e + 4, -e^5 - 2*e^4 + 29*e^3 - 15*e^2 - 84*e + 7, -2*e^5 - e^4 + 32*e^3 + 11*e^2 - 98*e - 75, e^5 - 5*e^4 - 2*e^3 + 21*e^2 + 5*e - 16, 2*e^5 - 7*e^4 - 9*e^3 + 36*e^2 + 9*e - 17, 3*e^5 - 15*e^4 - e^3 + 64*e^2 - 21*e - 31, -3*e^5 + 13*e^4 - 46*e^2 + 23*e + 29, -5*e^5 + 19*e^4 + 21*e^3 - 82*e^2 - 45*e + 25, -e^5 + 3*e^4 + 7*e^3 - 9*e^2 - 36*e - 18, 4*e^5 - 16*e^4 - 7*e^3 + 52*e^2 + 7*e - 18, -5*e^5 + 19*e^4 + 16*e^3 - 76*e^2 - 17*e + 20, 1/2*e^5 - 10*e^4 + 34*e^3 + 25/2*e^2 - 219/2*e - 13/2, -2*e^5 + 11*e^4 - 9*e^3 - 32*e^2 + 45*e + 18, -e^5 + 24*e^3 - 18*e^2 - 83*e + 12, -2*e^5 + 10*e^4 - 37*e^2 - 2*e + 27, 7/2*e^5 - 13*e^4 - 17*e^3 + 119/2*e^2 + 95/2*e - 71/2, 5*e^5 - 9*e^4 - 59*e^3 + 62*e^2 + 164*e - 1, 3*e^5 - 3*e^4 - 42*e^3 + 18*e^2 + 133*e + 19, -7/2*e^5 + 20*e^4 - 13*e^3 - 113/2*e^2 + 77/2*e - 17/2, e^4 - e^3 - 5*e^2 - 7*e - 11, 15/2*e^5 - 29*e^4 - 20*e^3 + 209/2*e^2 + 59/2*e - 43/2, -4*e^5 + 21*e^4 - 13*e^3 - 68*e^2 + 65*e + 41, -1/2*e^5 - 3*e^4 + 16*e^3 + 39/2*e^2 - 111/2*e - 63/2, e^5 + 2*e^4 - 16*e^3 - 18*e^2 + 52*e + 4, -1/2*e^5 + e^4 + 10*e^3 - 15/2*e^2 - 105/2*e + 29/2, 4*e^5 - 6*e^4 - 46*e^3 + 32*e^2 + 136*e + 10, 3*e^5 - 14*e^4 - 4*e^3 + 61*e^2 - 3*e - 27, -e^5 + 5*e^4 + e^3 - 16*e^2 - 16*e + 10, -1/2*e^5 + 5*e^4 - 5*e^3 - 41/2*e^2 + 15/2*e + 13/2, 4*e^5 - 14*e^4 - 18*e^3 + 49*e^2 + 56*e + 3, 4*e^5 - 21*e^4 + 4*e^3 + 92*e^2 - 36*e - 65] hecke_eigenvalues = {} for i in range(len(hecke_eigenvalues_array)): hecke_eigenvalues[primes[i]] = hecke_eigenvalues_array[i] AL_eigenvalues = {} AL_eigenvalues[ZF.ideal([17, 17, -w^2 + w + 3])] = -1 # EXAMPLE: # pp = ZF.ideal(2).factor()[0][0] # hecke_eigenvalues[pp]